

This is the Reference copy for the LECTURERS to conduct

ONLINE Classes. - Maanyas MGB Publications

Kindly don’t send this soft copy to the STUDENTS.

ECET -2021 STUDY MATERIALS &

20+ YEARS PREVIOUS PAPERS WITH SOLUTIONS

MAANYA’S MGB Publications
All SEMESTER TEXTBOOKS are available for the

STUDENTS at FREE of COST in our MOBILE APP

Hyderabad: 9290429549 & Tirupati: 9000305079

i

1st Edition AP EC 502 MC

Microcontrollers

For D.E.C.E III Year (V sem)

N. Dhananjaya * P. Srinivas
D. Kiran Kumar * D. V Ramana

Maanyas M.G.B Publications
Hyderabad & Tirupati. Cell: 9000 3050 79

Price Rs: 175

ii

Microcontrollers

First Edition: June – 2018

© All Rights Reserved

Printing of books passes through many stages–writing, composing, proof
reading, printing etc. We try our level best to make the book error-free. If any
mistake has inadvertently crept in, we regret it and would be deeply indebted to
those who point it out. We do not take any legal responsibility.

No part of this book may be reproduced, stored in any retrieval system or
transmitted in any form by any means - electronic, mechanical photocopying,
recording or otherwise without the prior written, permission of the author and
publishers.

For Copies Please Contact

M.G.B Publications
Cell: 9000305079

Also Available at All Leading Book Shops

iii

Table of Contents

Chapter Name ……. Page. No

1. Architecture of Microcontroller 8051 ……. 1.1 – 1.42

2. Instruction set of 8051 microcontroller ……. 2.1 – 2.62

3. 8051 Programming Concepts ……. 3.1 – 3.37

4. Interfacing Simple I/O devices ……. 4.1 – 4.22

5. Programming 8051 Timers, Serial port & Simple
Applications

……. 5.1 – 5.37

iv

DEDICATED

TO

My Daughter MAANYA

Author
N. Dhananjaya

OBJECTIVES

1.1 Draw the block diagram of a microcomputer and explain the function of

each block.

1.2 List the features of micro controllers.

1.3 Compare Microprocessors and Microcontrollers

1.4 State the details of INTEL microcontroller family chips.

1.5 State the features of Intel 8051 Micro Controller.

1.6 Draw the functional block diagram of 8051 microcontroller

1.7 Draw the register structure of 8051and explain.

1.8 Explain the function of various special function registers.

1.9 Draw the pin diagram of 8051 micro controller and specify the purpose

of each pin.

1.10 Explain internal memory Organization in 8051

1.11 Explain external memory access in 8051

1.12 Explain various ports of 8051.

1.13 Explain counters & timers in 8051

1.14 Explain serial input/output of 8051

1.15 Explain interrupts in 8051

 Architecture of Microcontroller 8051

 1	

1‐2 Architecture of Microcontroller 8051

Maanya’s M.G.B Publications Microcontrollers

1.1. Draw the block diagram of a microcomputer and explain the
function of each block.
• A digital computer in which one Microprocessor has been provided to act as a CPU

is called micro computer.
• It is the smallest and least expensive general purpose computer.
• The fig. 1.1 shows the block diagram of Microcomputer.
• It mainly consists of four sections namely:

1. Microprocessor
2. Input device
3. Output device
4. Memory

Fig. 1.1(a) Block diagram of Microcomputer

Fig. 1.1(b) Block diagram of Microcomputer (additional fig)

1. MPU (Microprocessor Unit)
• The CPU of a microcomputer is a microprocessor. The major components of a

microprocessor are: ALU, register array and timing and control unit.
• The heart of a microcomputer is microprocessor unit (MPU).

1‐3Architecture of Microcontroller 8051

Maanya’s M.G.B Publications Microcontrollers

• The MPU is a VLSI device.
• It is a general purpose processing unit, built into a single integrated circuit.
• It is a decision making unit, which decides the task to be performed by the system.
• It may be 8-bit or 16-bit or 32-bit processor.
• The MPU executes instructions of the program and process data.
• It is responsible for performing all arithmetic operations and making the logical

decision initiated by the computer’s program.
2. Memory Unit
• The memory unit is used to store data, address, or instructions in hexadecimal

form.
• The memory unit is subdivided into two parts as Primary memory and Secondary

memory or auxiliary memory.
• The primary memory is also called as semiconductor memory.
• The primary memory is again divided into number of sub units in which RAM and

ROM are important.
• The RAM is used to store the temporary data whereas ROM is used to store

permanent data.
• The secondary or auxiliary memory is a magnetic memory. It is used to store large

amount of data. Example for secondary memory is hard disk.
3. Input Device
• The computer receives data and instructions through input devices.
• An input devices converts instructions, input data and signals into proper binary

form suitable for a digital computer.
• A keyboard and simple switches are used as input devices.

4. Output Device
• The computer sends the processed data (Results) to the output devices.
• An output device may store, print, display or send electrical signal to control

certain equipment.
• The examples of simple output devices are LEDs, CRT, D/A converter, Video

Monitor and Printers etc.

1.2. List the features of micro controllers.
Definition: The special digital system contains a microprocessor, memory
(RAM/ROM), I/O ports and timer on a single chip is known as Microcontroller.
The main features of Microcontroller are:
• A microcontroller is a single chip computer.

1‐4 Architecture of Microcontroller 8051

Maanya’s M.G.B Publications Microcontrollers

• It is used to control electronic or electro-mechanical devices. It is also called as
dedicated computer or embedded microcontroller.

• It has the specified computational capabilities. In compare with general purpose
microprocessor, it is less cost and more effective.

• It is designed for a specific task.
• It is designed with VLSI technique.
• It is highly integrated chip that consists all the components comprising a controller.

Basically it contains a CPU, RAM, ROM, I/O ports, and timers.
• Specifically it is designed for a single task to control one device. It is small in size.

Microcontrollers are selected based on bus width,
• Internal logic technique (VLSI or VHDL or Verilog).
• Present 8, 16 and 32bit microcontrollers are in use.

1.3. Compare Microprocessors and Microcontrollers
S.No. Microprocessor (MP) Microcontroller (MC)

1 Microprocessor contains ALU,
control unit (clock and timing),
different registers and interrupt
circuit.

Microcontroller contains microprocessor,
memory (ROM and RAM), I/O ports and
peripheral devices such as A/D converter,
timer, counter etc.

2 Microprocessor must have many
additional parts to function as a
computer.

Microcontroller can function as a
computer with the addition of no external
parts.

3

Microprocessor based system
requires more hardware.

Microcontroller based system requires less
hardware reducing PCB size and
increasing the reliability.

4

Microprocessor based system is
more flexible in design point of
view.

Less flexible in design point of view.

5 It has single memory map for
data and code.

It has separate memory map for data and
code.

6 Very few pins are programmable.

Most of the pins are programmable that is,
capable of having several functions.

7 Time taken to complete a process
is more.

Time taken to complete a process is less.

8 It has many instructions to move
data between memory and CPU.

It has one or two instruction to move data
between memory and CPU.

9 It may have one or two bit
handling instructions.

It may have many bit handling
instructions.

1‐5Architecture of Microcontroller 8051

Maanya’s M.G.B Publications Microcontrollers

1.4. State the details of INTEL microcontroller family chips.
1. In 1976, Intel introduced 8-bit microcontroller 8048. It is also known as MCS-48. The

same company continued to drive the evolution of single chip microcontrollers.
2. In the year 1980, Intel introduced MCS-51 (8051 family) microcontroller, with higher

performance than 8048.
3. The below table shows the main features of Intel 8051 family.

Features 8051 8052 8031

1. ROM (on-chip) 4K bytes 8K bytes 0

2. RAM (on-chip) 128 bytes 256 bytes 128 bytes

3. Timers 2 3 2

4. I/O Pins 32 32 32

5. Serial ports 1 1 1

6. Interrupt sources 6 8 6

4. In 1983, Intel introduced a 16-bit single chip microcomputer series called MCS-
96(8096 family). It contains 16-bit CPU, 8 K ROM, 232 bytes RAM, timer/counter,
parallel I/O, 10-bit A/D, high control such as missile guidance and control, complex
instrumentation system, control of sophisticated machines etc.

Note: The 8051 is the original member of the 8051 family. It is an 8-bit microcontroller
designed by Intel in the year 1981.

1.5. State the features of Intel 8051 Micro Controller.
The features of Intel 8051 are listed below.
• The 8051 is an 8-bit microcontroller
• It was designed by Intel in the year 1981.
• It is a 40 pin IC chip.
• It operates with 12 MHz clock and a single +5 V supply.
• Its internal ROM (on–chip program memory) capacity is 4K bytes.
• It’s internal RAM (on – chip data memory) capacity is 128 bytes.
• It has external data memory of 64Kbytes and external program memory of

64Kbytes.
• It has two 16-bit Timers/Counters.
• It has 32 bidirectional I/O lines organized as four 8-bit ports (P0-P3).

1‐6 Architecture of Microcontroller 8051

Maanya’s M.G.B Publications Microcontrollers

• It has one serial port and four 8-bit I/O ports.
• It has four bank registers.
• It has five interrupts, 2 from external devices, 2 from timer/counters and 1 from

serial port.
• It has 111 instructions: 49 single byte, 45 two byte and 17 three byte.

1.6. Draw the functional block diagram of 8051 microcontroller
Fig. 1.6(a) shows the block diagram of a microcontroller. A detailed functional

block diagram of 8051(or) the internal architecture of 8051 is shown in fig. fig. 1.6(b).
The functional description of each block is presented briefly below.

Fig. 1.6(a)

1. CPU (Microprocessor)
CPU is a general purpose microprocessors such as Intel’s X86 family or Motorola’s

680×0 family.
The CPU of 8051 is capable in performing arithmetic and logical operations like

additions, subtraction, multiplication, division, logical AND, OR, EX-OR, rotate, clear
and complement. This CPU can do bit wise as well as byte wise manipulations. It works
based on the code written in the ROM.
2. ROM/RAM Memory

It is a fixed amount of on chip or internal memory. It stores programs and data
temporally during program execution. In other words the program codes are stored in
the ROM and the data could be stored in RAM.

1‐7Architecture of Microcontroller 8051

Maanya’s M.G.B Publications Microcontrollers

Fig. 1.6(b)

3. I/O Ports
The 8051 consist of 4 I/O ports: port0, port 1, port 2 and port3. These are used

for interfacing I/O devices like switches, keyboard, LED/LCD, ADC, DAC, etc and also
for any other input/output operations. The external address and data buses are formed
only by using port lines.
4. Serial Port

Computers transfer data in two ways: parallel and serial. In serial communication
the data is sent one bit at a time. The 8051 has one serial port for this purpose. It is full
duplex hence it can transmit and receive simultaneously.

1‐8 Architecture of Microcontroller 8051

Maanya’s M.G.B Publications Microcontrollers

5. Timers and Counters
8051 has two 16-bit timers: timer-0 and timer-1. They can be used either as timers

or event counters. Counters are used to count the events where as timers are used to
maintain time delays between the actions.
6. Interrupt control

Interrupt is a signal send by an external device or from internal unit to the
microcontroller so as to request the controller to perform a particular task or function.
The interrupt control unit transfers the microcontroller attention from one task to other.
7. Oscillator

This circuit generates the basic timing clock signal for the operation of the circuit
using crystal oscillator. The oscillator circuit generates a train of pulses at a frequency of
the crystal.
Note: The machine cycle is group of six states (or 12 crystal pulses). A state is the basic
time period for the microcontroller to fetching an op-code, decoding an op-code,
executing an op-code or writing data byte.
8. Bus control

A control bus is used by microcontroller for communicating with other devices
within the system. Basically Bus is a collection of wires which work as a communication
channel or medium for transfer of Data. Buses are of three types: i) Address ii) Bus Data
Bus and iii) Control bus.
9. Special Function Registers (SFRs)

The 8051 has 21 Special Function Registers. These are: A, B, DPTR, PSW, IP, IE,
TCON, SCON, PCON, P0, P1, P2, P3, SBUF etc. All these are byte addressable and some
of them are bit addressable also. The SFRs can be accessed by their names or by their
addresses. These are useful in accessing I/O ports, timers/counters, UART, power
Controlling etc.
10. Timing and Control Unit

This unit synchronizes all the operations with the clock and generates control
signals for proper functioning.
11. Instruction Register

It is an 8-bit register. When instruction is fetched from memory it is loaded in the
instruction register. It holds the instruction which is to be decoded. It determines the
operation to be followed in executing the entire instruction.
12. Temporary Registers

There are two 8-bit temporary registers TMP1, TMP2. They are also integral part
of ALU. Comparisons and certain other operations use the contents of these registers.

1‐9Architecture of Microcontroller 8051

Maanya’s M.G.B Publications Microcontrollers

1.7. Draw the register structure of 8051and explain.
Registers are used to store the data temporarily. The data may be of op-codes or

operands or address of a memory location or address of a peripheral. The 8051 has wide
range of registers.
These are classified as:

1. General purpose registers
2. Special purpose registers(MCU related registers)
3. Special function registers

Fig.1.7

1.7.1. General purpose registers
The 8051 has 34 general purpose registers. They are Accumulator, Register B

and remaining 32 registers are arranged a part of the internal 128 byte RAM. All these
registers are programmable registers.

1‐10 Architecture of Microcontroller 8051

Maanya’s M.G.B Publications Microcontrollers

Fig. 1.7.1

GPRs Function
1. R0-

R7
• The lowest 32 bytes (address 00H to 1FH) of the on-chip RAM form 4

banks.
• There are 128 bytes of RAM in the 8051.
• The lowest 32 bytes (address 00H to 1FH) of the on-chip RAM form 4

banks.
• The 4 register banks are numbered 0 to 3. Each bank is made up of 8

registers named R0 to R7. These are used to store data temporarily.
• RAM locations from 00H to 07H are set aside for bank 0 of R0-R7 where

R0 is RAM location 00H, R1 is RAM location 01H, R2 is location 02H,
and so on, until memory location 07H, which belongs to R7 of bank 0.

• The second bank of registers R0-R7 starts at RAM location 08H and goes
to location 0FH.

• The third bank of R0-R7 starts at memory location 10H and goes to
location 17H.

• Finally, RAM locations 18H to 1FH are set aside for the fourth bank of
R0-R7.

• The fig. a shows how the 32 bytes are allocated into 4 banks.
• Note that only one register bank can be accessed by 8051 at a time.
• The bits RS1 (PSW.4) and RS0 (PWS.3) of program status word (PSW)

1‐11Architecture of Microcontroller 8051

Maanya’s M.G.B Publications Microcontrollers

are used to select any one of the four register banks as follows.
RS1 RS0 Bank selection
0 0 Bank 0: 00- 07H
0 1 Bank 1: 08- 0FH
1 0 Bank 2: 10- 17H
1 1 Bank 3: 18- 1FH

• Default bank (On reset) is bank 0 (locations 00 – 07H).
2. A A (Accumulator)

• It is an 8-bit register.
• It is used for all arithematic and logical opeations.
• The A-register must be used as destination for all addition and

subtraction operations.
• For logical operations this can be used as a source or a destination.
• There are some specific operations like clear, complement, rotate and

swapping the data must be reside in A-register only.

Do You Know?
• While multiplying, it holds one of the 8-bit operands and after the

execution of the multiplication instruction; it stores the lower byte of the
result.

• While dividing, it holds an 8-bit dividend and after the execution of
division instruction, the quotient is stored in A-register.

3. B • It is an 8-bit register.
• It is used for multiplication and division along with the accumulator.
Do You Know?
• While multiplying, it holds one of the 8-bit operands and after the

execution of the multiplication instruction; it stores the higher byte of the
result.

• While dividing, it holds an 8-bit divisor and after the execution of
division instruction, the remainder is stored in B-register.

1.7.2. Special purpose registers
The microcontroller contains four special purpose registers. They are

1. Program counter
2. Stack Pointer
3. Data Pointer
4. Program Status Word

1‐12 Architecture of Microcontroller 8051

Maanya’s M.G.B Publications Microcontrollers

SPRs Function
1. PC • The program counter (PC) is a 16-bit register.

• It is used to hold the address of next instruction to be fetched.
• The PC is automatically incremented to point the next instruction in

the program sequence after execution of the current instruction.
• The PC is the only register that does not have an internal (on-chip)

RAM address.

2. SP • A group of memory locations in RAM is referred to as stack. The stack
can store data as well as address during execution of a program.

• The 8-bit stack pointer (SP) register is used by the 8051 to access the
stack. It holds the address of top of the stack.

• After the RESET operation, the stack pointer is initialized to 07H,
causing the stack to begin at 08H.

• When data is stored on to the stack, the SP value is incremented by 1.
Similarly while retrieving the data from the stack; the SP value is
decremented by 1.

• The data is pushed onto the stack using instruction PUSH and the
data is retrieved using instruction POP.

3. DPTR • The DPTR register is made up of two 8-bit registers named DPH and
DPL as shown in fig. 1.7.2.

Fig. 1.7.2

• Its function is to hold a 16-bit address.
• The data pointer is used for addressing the off-chip data and code

with the MOVX and MOVC commands, respectively.

4. PSW • PSW (Program Status Word) is an 8-bit register. It consists of 4 flags
and 2-bits for bank selection of internal RAM.

1‐13Architecture of Microcontroller 8051

Maanya’s M.G.B Publications Microcontrollers

Additional Information
 Program Status Word (Flag Register)

• Program Status Word or simply PSW register is one of the most important SFRs.
• It is an 8-bit register. It consists of:

o 4 conditional flags that set /reset automatically to the outcomes of math
operations (CY, AC, OV & P).

o 2 Register bank select bits (RS1 & RS0).
o A general purpose flag (F0).

• Fig. 1.7.3 shows the bit pattern of the program status word.

Fig.1.7.3

a) Conditional Flags
1. Carry Flag (CY)
• Carry flag is set if there is a carry from bit 7.
• It is used in arithmetic, jump, rotates, and Boolean instructions.

2. Auxiliary Carry Flag (AC)
• Auxiliary Carry flag (AC) is set when there is a carry out of 3rd bit, during addition

or subtraction operation and otherwise cleared.
• Auxiliary Carry Flag is used for BCD operations only.

3. Overflow Flag (OV)
• The overflow flag is set if there is a carry from bit 7, but not from bit 6, or there is a

carry from bit 6, but not from bit 7 otherwise it is cleared.

1‐14 Architecture of Microcontroller 8051

Maanya’s M.G.B Publications Microcontrollers

4. Parity Flag (P)
• The parity flag is set if the accumulator contains an odd number of 1s.
• The parity flag is reset if the accumulator contains an even number of 1s.
• It is mainly used during data transmit and receive via serial communication.

b) Register Bank Select bits (RS1 and RS0)
• These two bits are used to select one of four register banks of RAM.
• Below table shows the address ranges of four register banks along with RS1 & RS0

bits.

 RS1 RS0 Register bank selected Address range in the on chip RAM

0 0 Bank 0 00-07 H

0 1 Bank 1 08-0F H

1 0 Bank 2 10-17 H

1 1 Bank 3 18-1FH

c) F0
• F0 is available to user as a general purpose flag. This flag can be set/cleared by

software, or its status can be observed by software.
• The user can define its role.

*Note:
1. PSW is a bit addressable register.
2. Each of the PSW bits is referred as PSW.X.
3. Thus, PSW.0 is the least significant bit (LSB), which is a parity flag, and the

most significant bit (MSB) PSW.7 is the carry flag.
1.7.3. Special function registers

SFRs Function
1. TMOD • TMOD (Timer Mode) register is used to specify the mode of

operation of timers/counters of 8051.
• It is dedicated particularly to the two timers T0 and T1.

2. TCON • TCON (Timer Control) register is used to control the entire
operation of the timer/counter of 8051.

3. IE • IE (Interrupt Enable) register is used to enable/disable all or any
of the interrupts of 8051.

4. IP • IP (Interrupt Priority) register is used to alter the priority (high

1‐15Architecture of Microcontroller 8051

Maanya’s M.G.B Publications Microcontrollers

or low) among the interrupts of 8051.

5. SCON • SCON (Serial Control) register is used to specify the mode in
which the serial port is to work.

6. PCON • PCON (Power Control) register is used to control the baud clock
generated from the timer.

7. SBUF • SBUF is physically two registers.
• One is write only and is used to hold data to be transmitted out

of the 8051 via TXD.
• The other is read only and holds received data from external

sources via RXD.

8. P0, P1,
P2,& P3

• These registers specify the value to be output on an output port
or the value read from an input port.

• They are also bit addressable. Each port is connected to an 8-bit
register in the SFR.

1.8. Explain the function of various special function registers.

Fig. 1.8

1‐16 Architecture of Microcontroller 8051

Maanya’s M.G.B Publications Microcontrollers

Some of the special function registers are discussed in the previous section. Let
us consider the remaining SFRs.
1.8.1. Interrupts control SFRs
 The 8051 have five interrupts. There are two registers to handle interrupts. These
are:
 a) IP (Interrupt Priority) SFR
 b) IE (Interrupt Enable) SFR
a) IP (Interrupt Priority) SFR
• It is an 8-bit SFR.
• It is used to alter the priority (high or low) among the interrupts of 8051.
• If the bit is 0, the corresponding interrupt has a lower priority and if the bit is 1, the

corresponding interrupt has a higher priority.
• Bit addressing is allowed with this register also.

Fig. 1.8.1(a)

Bit Symbol Function
7 - Not used (reserved for future).
6 - Not used (reserved for future).
5 PT2 Not used (reserved for future).
4 PS Serial port interrupt priority bit

(Set to ‘1’ for having highest priority)

3 PT1 Timer 1 interrupt priority bit
(Set to ‘1’ for having highest priority)

2 PX1 External interrupt 1 priority bit
(Set to ‘1’ for having highest priority)

1 PT0 Timer 0 interrupt priority bit
(Set to ‘1’ for having highest priority)

0 PX0 External interrupt 0 priority bit
(Set to ‘1’ for having highest priority)

*Note:
1. The priority bit may be set to 1 (highest) or 0 (lowest).

o 0 → Low priority
o 1 → High priority

2. Bit addresses: B8H to BFH

1‐17Architecture of Microcontroller 8051

Maanya’s M.G.B Publications Microcontrollers

3. Upon the reset the 8051 the priorities among the five interrupts are listed in below
table.

Interrupt Priority

External interrupt 0 (Highest)

(Lowest)

Timer 0 interrupt

External interrupt 1

Timer 1 interrupt

Serial port interrupt

b) IE (Interrupt Enable) SFR
• It is an 8-bit bit addressable SFR.
• It is used to enable/disable all or any of the interrupts of 8051.
• If the bit is 0, the corresponding interrupt is disabled.
• If the bit is 1, the corresponding interrupt is enabled.
• Upon reset, all interrupts are masked (disabled).
• Fig. 1.8.1(b) shows the bit arrangement of IE register.

Fig. 1.8.1(b)

Bit Symbol Function

7 EA Set to ‘0’ to disable all interrupts.
Set to ‘1’ to control all the interrupts individually.

6 - Not used (reserved for future).

5 ET2 Not used (reserved for future).

4 ES SET to ‘1’ to enable Serial port interrupt.

3 ET1 SET to ‘1’ to enable Timer 1 interrupt.

2 EX1 SET to ‘1’ to enable External interrupt 1.

1 ET0 SET to ‘1’ to enable Timer 0 interrupt.

0 EX0 SET to ‘1’ to enable External interrupt 0.

1‐18 Architecture of Microcontroller 8051

Maanya’s M.G.B Publications Microcontrollers

*Note:
1. EA - Global interrupt enable/disable.

a. 0 - Disables all interrupt requests.
b. 1 - Enables all individual interrupt requests.

2. Bit address: A8H to AFH.
1.8.2. TL0, TH0, TL1, TH1 SFRs

The 8051 contain two 16 bit timer/counters named as 0T and 1T . Since the 8051
is a 8 bit microcontroller, these 16 bit registers are divided into two 8 bit registers. 0TL
and 0TH and 1TL and 1TH .

TL0 : Timer0 Low byte
TL1 : Timer1 Low byte
TH0 : Timer0 High byte
TH1 : Timer1 High byte

1.8.3. Timer/Counter control SFRs
 a) TMOD (Timer/Counter Mode Control) SFR
 b) TCON (Timer/Counter Control) SFR
a) TMOD (Timer/Counter Mode Control) SFR
• TMOD is an 8-bit SFR.
• It is dedicated particularly to the two timers T0 and T1.
• This register is used to select the operating mode and the timer/counter operation

of the timers.
• Fig. 1.8.3(a) shows the bit assignment for TMOD SFR.
• As shown in fig. 1.8.3(a) the lower four bits are used to control the timer 0 and the

upper four bits are used to control the timer 1.

Fig. 1.8.3(a)

1‐19Architecture of Microcontroller 8051

Maanya’s M.G.B Publications Microcontrollers

Symbol Function

GATE Gate control.

TC/ Timer or counter selector.

M1 & M0 Timer modes select bits.

• GATE:
o 1 → The timer operation is controlled by external sources through the

INT1/ INT0 pins available in port 3 of the microcontroller 8051. This is
hardware method of controlling the timer.

o 0 → The timer operation is controlled by software commands such as SETB
TR, CLR TR. This is software method of controlling the timer.

• TC/ :
o 1 → T1/T0 will work as counters
o 0 → T1/T0 will work as timers

• M1, M0: These two bits will decide the mode of operation of the timer/counter.

M1 M0 Operating Mode

0 0
Mode 0: 13-bit timer
(TL-5 bits and TH-8 bits)

0 1
Mode 1: 16-bit timer
(TL-8 bits and TH-8 bits).

1 0
Mode 2: 8-bit auto-reload
8-bit counter (TL-8 bit) overflow from TL not only sets TF, but also reloads
TL with the contents of TH.

1 1
Mode 3: Split mode
In this mode, real timer0 (TL0 & TH0) alone is being used independently as
8-bit timers.

b) TCON (Timer/Counter Control) SFR
• TCON is called timer/counter control register.
• It is also an 8-bit register.
• This register contains timer overflow flags, timer run control bits, external interrupt

flags and external interrupt type control bits.
• Fig. 1.8.3(b) show the bits arrangement of TCON register.
• The higher nibble used to turn ON or OFF the specific timer.

1‐20 Architecture of Microcontroller 8051

Maanya’s M.G.B Publications Microcontrollers

• The lower nibble is meant for controlling the interrupts.

Fig. 1.8.3(b)

Bit Symbol Function

7 TF1 Timer 1 Overflow Flag. This bit is automatically set by hardware on
the Timer 1 overflow. Cleared when interrupt processed.

6 TR1 Timer 1 Run control bit.
Set/cleared by software to turn timer/counter on/off.

5 TF0 Timer 0 Overflow Flag. This bit is automatically set by hardware on
the Timer 0 overflow. Cleared when interrupt processed.

4 TR0 Timer 0 Run control bit. Set/cleared by software to turn
timer/counter on/off.

3 IE1 Interrupt 1 Edge Flag. Set by hardware when 1INT pin detects high to
low transition. Cleared when interrupt processed.

2 IT1 Interrupt 1 type control bit. Set /cleared by software to specify
falling edge/low level triggered external interrupts.

1 IE0 Interrupt 0 Edge Flag. Set by hardware when 0INT pin detects high to
low transition. Cleared when interrupt processed.

0 IT0 Interrupt 0 type control bit. Set /cleared by software to specify
falling edge/low level triggered external interrupts.

*Note:
1. All flags can be set by the indicated hardware action.
2. The flags are cleared when interrupt is serviced by the processor.

1.8.4. Serial Port SFRs
 a) SCON (Serial Control) SFR
 b) SBUF (Serial Data Buffer) SFR
 c) PCON (Power Control) SFR

1‐21Architecture of Microcontroller 8051

Maanya’s M.G.B Publications Microcontrollers

a) SCON (Serial Control) SFR
1. It is an 8-bit bit addressable SFR.
2. It is a serial port mode control register and is used to control the operation of

the serial port.
3. This register contains not only the mode selection bits, but also the specific bit

for transmit and receive; and the serial port interrupt bits.
4. Fig. 1.8.4(a) shows the bits arrangement of SCON SFR.

Fig. 1.8.4(a)

Bit Symbol Function

7 SM0 Serial port Mode control bit 0. Set/Cleared by software.

6 SM1 Serial port Mode control bit 1. Set/Cleared by software.

5 SM2 Serial port Mode control bit 2. It also known as multiprocessor
communication enable bit. For most applications 8051 is not used in
multiprocessor environment. Hence SM2=0.

4 REN Receiver Enable control bit. Set/Cleared by software to enable/disable
serial data reception.

3 TB8 Transmit Bit 8. It is the 9th bit that will be transmitted in modes 2 and 3.
It is set or cleared by software as desired.

2 RB8 Receiver Bit 8. In modes 2 and 3 this is the 9th bit that was received
(Cleared by hardware if 9th bit received is logic 0. Set by hardware if 9th
bit received is logic 1). In mode 1 if SM2 = 0, RB8 is the stop bit that was
received. In mode 0 RB8 is not used.

1 TI Transmit interrupt flag. Set by hardware when byte transmitted.
Cleared by software after servicing.

0 RI Receive interrupt flag. Set by hardware when byte received. Cleared
by software after servicing.

*Note: Bit address 98H to 9FH
b) SBUF (Serial Data Buffer) SFR
• Computers must be able to communicate with other computers in modern

multiprocessor distributed systems. One cost-effective way to communicate is to

1‐22 Architecture of Microcontroller 8051

Maanya’s M.G.B Publications Microcontrollers

send and receive data bits serially. The 8051 has a serial data communication circuit
that uses register SBUF to hold data.

• SBUF is physically two registers. One is write only and is used to hold data to be
transmitted out of the 8051 via TXD.

• The other is read only and holds received data from external sources via RXD. Both
mutually exclusive registers use address 99H.

c) PCON (Power Control) SFR
1. PCON is a power control register of 8-bit length.
2. Its vectored address is 87H.
3. It is a byte addressable register.
4. It is used for power control and baud rate selection.
5. The PCON register also contains two general purpose flags and a double baud

rate bit.
6. The fig. 1.8.4(b) shows the bit patterns for PCON SFR.

Fig. 1.8.4(b)

Bit Symbol Function
7 SMOD Double baud rate bit.

6,5,4 - Not implemented.
3 GF1 General purpose user flag bit 1 set/clear by program.
2 GF0 General purpose user flag bit 0 set/clear by program.
1 PD Power down bit.
0 IDL Idle mode bit.

*Note: Bit addresses C8H to CFH
1.8.5. Parallel I/O Ports SFRs
1. In 8051 microcontroller, there are 4 ports for I/O operation. They are Port 0, Port 1,

Port 2 and Port 3.
2. Each I/O port takes 8 pins. In the pin diagram of 8051 microcontroller, a total of 32

pins ()3284 =× are occupied by the 4 I/O ports.

3. All 4 ports are bidirectional, i.e., each pin will be configured as input or output (or
both) under software control.

4. The functions of 4 ports are listed in below table.

1‐23Architecture of Microcontroller 8051

Maanya’s M.G.B Publications Microcontrollers

Port Functions

Port
0

• Used as an I/O Port
• Used as a bi-directional low-order address and data bus for external

memory

Port
1

• Used as an input/output Port

Port
2

• Used as an input/output port
• Used as a higher-order address bus for external memory.

Port
3

• Used as an input/output Port or used for alternate function as shown
below.

P3.0 – RXD : Serial data input
P3.1 – TXD : Serial data output
P3.2 – INTO : External interrupt 0
P3.3 – INT1 : External interrupt 1
P3.4 – T0 : External timer 0 input
P3.5 – T1 : External timer 1 input
P3.6 – WR : External memory write signal
P3.7 – RD : External memory read signal

Additional Information
Special Function Registers

SFRs along with their direct addresses are listed in table.

Sl.No. Symbol Name Address

1. *ACC Accumulator 0E0H

2. *B B Register 0F0H

3. *PSW Program Status Word 0D0HS

4. SP Stack Pointer 81H

5. DPL Data pointer low byte 82H

6. DPH Data pointer high byte 83H

7. *P0 Port 0 80H

8. *P1 Port 1 90H

1‐24 Architecture of Microcontroller 8051

Maanya’s M.G.B Publications Microcontrollers

9. *P2 Port 2 0A0H

10. *P3 Port 3 0B0H

11. *IP Interrupt priority Control 0B8H

12. *IE Interrupt Enable Control 0A8H

13. TMOD Timer/Counter Mode Control 89H

14. *TCON Timer/Counter Control 88H

15. TH0 Timer/Counter 0 High Byte 8CH

16. TL0 Timer/Counter 0 Low Byte 8AH

17. TH1 Timer/Counter 1 High Byte 8DH

18. TL1 Timer/Counter 1 Low Byte 8BH

19. * SCON Serial Control 98H

20. SBUF Serial Data Buffer 99H

21. PCON Power Control 87H

*Note:
1. * = Bit Addressable.
2. Any address used in the program must start with a number. Thus, the

addresses E0, F0, A0 etc., are specified as 0E0, 0F0, 0A0, etc.
3. Failure to use this number convention will result in an assembler error when

the program is assembled.
2. The following two points should be noted about the SFR addresses.
1. The SFRs have addresses between 80H and FFH.
2. Not all the address space of 80H to FFH is used by the SFRs. The unused

locations are reserved and must not be used by the 8051 programmer.

1.9. Draw the pin diagram of 8051 micro controller and specify
the purpose of each pin.

1. The 8051 is packaged in a 40-pin DIP (Dual in line package).
2. It is important to note that many pins of 8051 are used for more than one function.
3. The alternative functions of pins are shown in parenthesis.
4. The 16 pins are used for single function. The remaining 24 pins may be used for

one of two entirely different functions (24 x 2 =48 functions) as shown in fig. 2.85.
5. Fig. 1.9 shows the pin diagram of 8051.

1‐25Architecture of Microcontroller 8051

Maanya’s M.G.B Publications Microcontrollers

Fig. 1.9(a)

The description of each pin as follows.

Pin 1 - 8: Port 1
• A total of 8 pins named as P1.0 to P1.7 are belonging to port1.
• These pins can be used as input or output.

Pin 9: Reset input (RST)
• A logic one (high) on this pin resets the microcontroller.
• By applying logic zero to this pin, the program starts execution from the beginning.

Pin 10 - 17: Port 3
• Similar to port 1, each of these pins can serve as general input or output.
• In addition these lines provide alternative functions as listed in below table.

1‐26 Architecture of Microcontroller 8051

Maanya’s M.G.B Publications Microcontrollers

Pin No. Designation Function

10 P3.0 (RXD) Serial data input.

11 P3.1 (TXD) Serial data output.

12 P3.2)0INT(External interrupt 0 input.

13 P3.3)1INT(External interrupt 1 input.

14 P3.4 (T0) External timer 0 input (or) Counter 0 clock input.

15 P3.5 (T1) External timer 1 input (or)
Counter 1 clock input.

16 P3.6 (WR) External memory write signal.

17 P3.7 (RD) External memory read signal

Pin 18-19: XTAL 1 and XTAL2
• The 8051 has on chip oscillator but requires an external clock to run it. Most often a

quartz crystal oscillator is connected at these two pins.
• If you decide to use a frequency source other than a crystal oscillator, such as a TTL

oscillator, it will be connected to XTAL1, XTAL2 is left unconnected.
Pin 20: VSS
• This is power supply ground.

Pin 21 - 28: Port 2
• If there is no intention to use external memory then these port pins (P2.0 to P2.7) are

configured as general inputs/outputs.
• In case external memory is used, the higher address (A8-A15) will appear on this

port.

Pin 29: PSEN
• Program Store Enable is the active low output pin.
• If external ROM is used for storing program then a logic zero (0) appears on it

every time the microcontroller reads a byte from memory.
Pin 30: ALE
• Address Latch Enable is an active high output pin. It is used for de-multiplexing the

address and data bus.
• This pin is also the program pulse input (PROG) during EPROM programming.

1‐27Architecture of Microcontroller 8051

Maanya’s M.G.B Publications Microcontrollers

Pin 31: EA
• External Access is an active low input pin.

• 0EA = : Program code bytes can be fetched exclusively from an external ROM
memory addresses 0000H to FFFFH.

• 1EA = : Program code from address 0000H to 0FFFH is fetched from internal ROM
and remaining code where address is 1000H to FFFFH is from external ROM
memory.

Pin 32 - 39: Port 0
• Similar to P2, if external memory is not used, these pins can be used as general

inputs/outputs.
• Otherwise this port provides low-order address (A7 - A0) and data bus (D7 – D0)

for external memory.
Pin 40: VCC
• 8051 operates on d.c power supply of +5V with respect to ground.
• The +5V is to be connected to pin VCC.

Additional Information
Pin diagram of 8051

The fig. (a) shows pin diagram of 8051.
• The description of each pin as follows:

1. Power Supply Pins
• Pin number 40 and 20 are used as power supply pins.
• In which VCC (+5) is given to the 40th pin and ground (VSS) is connected to 20th

pin.

 Fig. 1.9(b)

1‐28 Architecture of Microcontroller 8051

Maanya’s M.G.B Publications Microcontrollers

2. Crystal Pins
• The 8051 has an on-chip oscillator but it needs an external clock to activate it. A

quartz crystal is connected between XTAL1 (19) and XTAL2 (18). These two pins
are input pins.

3. Port Pins
• The 8051 consists four ports and each port needs 8-pins. The ports are Port 0,

Port1, Port 2 and Port 3. The function of each port is given below.
• Port 0: Pin No. 32 to 39 is assigned to port 0. These pins are bi-directional pins

(can be used as input or output). Port 0 is also the multiplexed low-order address
and data bus during accesses to external code and data memory. This port needs
pull-up resistors.

• Port 1: Port 1 requires 8 pins (pins 1 to 8). It can be used for input or output. This
port need not require pull-up resistors.

• Port 2: Pin No.21 to 28 is assigned to port 2. It can be used for input or output.
This port does not require any pull-up resistors. Port 2 is also used for higher order
address pins (A8-A15)

• Port 3: Pin No.10 to 17 assigned to port 3. These pins can use for input or output.
Port 3 has the additional function of providing some external important signals
such as P3.0 and P3.1 are used for the RXD and TXD. These two pins are used for
serial communication signals. P3.2 and P3.3 are used for external interrupts (INT0
and INT1). Pins P3.4 and P3.5 are used for timers (T 0and T1). Finally, P3.6 and
P3.7 are used to provide control signals RD and WR .

4. RESET
• Pin no.9 is used as reset pin. It is an input pin. When this pin active high, the

controller reset and terminate all activities. Hence this is referred as a power-on
reset.

5. EA
• EA means external access.

• The pin no. 31 is assigned for EA .
• It is an input pin and it must be connected to either Vcc or GND.
• If this pin is connected to the Vcc, the controller access the internal ROM, if this pin

is connected to the GND, the controller access the external ROM.

6. PSEN
• PSEN means “program strobe enable”.
• This is an output pin.

• Pin no.29 is assigned to PSEN .

1‐29Architecture of Microcontroller 8051

Maanya’s M.G.B Publications Microcontrollers

• This pin is used to control the external memory.
• This pin is connected to OE pin of the ROM.

7. ALE
• Pin no.30 is assigned to ALE.
• ALE means address latch enable.
• This is an output pin.
• This pin is used to de-multiplex the data line from the address lines.

1.10. Explain internal memory Organization in 8051

Fig 1.10

• A functioning computer must require memory for program and data. ROM is used
for program code and data could be stored in RAM.

• Code memory is the memory that holds the actual program that is to be run. Data
memory is the memory space where data are stored.

• The 8051 has internal RAM and ROM memory for these functions. Additional
memory can be added externally using suitable circuits.

1.10.1. Internal Memory (or) On-chip memory
• 8051 has 128 bytes of RAM for data memory and 4K bytes of ROM for code

memory inside the IC chip.
• These memories are called internal memory or on chip memory.

1‐30 Architecture of Microcontroller 8051

Maanya’s M.G.B Publications Microcontrollers

1. Internal RAM (i-RAM)

FIG 1.10.1(a)

• The fig. 1.10.1(a) shows the organization of internal RAM.
• The 128-bytes of internal RAM with address space from 00H to 7FH is divided into

three groups as follows:
a) Working registers (32)
• The lowest 32 bytes (address 00H to 1FH) of the internal RAM form 4 banks of 8

registers each.
• The 4 register banks are numbered 0 to 3.
• Each bank is made up of 8 registers named R0 to R7.
• Only one register bank can be accessed by 8051 at a time.
• Default bank (On reset) is bank 0 (locations 00 – 07H).
• The bits RS1 (PSW.4) and RS0 (PSW.3) of program status word (PSW) are used to

select any one of the four register banks.
b) Bit Addressable area
• The 8051 provides 16 bytes of a bit-addressable area.
• It occupies RAM byte addresses from 20H to 2FH, forming a total of 128 (16 x 8)

addressable bits.

1‐31Architecture of Microcontroller 8051

Maanya’s M.G.B Publications Microcontrollers

c) General purpose
• The last 80 bytes (30H to 7FH) of 8051 internal RAM is called general purpose RAM

or scratch pad memory locations.
• The scratch pad area is used for general purpose storage i.e. to store data, results,

constants and intermediate results.

Fig 1.10.1(b)

2. Internal ROM (i-ROM)
• The 8051 has 4 Kbytes of internal ROM with address space from 0000H to 0FFFH.
• This is used to store final version of the program codes hence the name program

memory.
Note: It is programmed by manufacturer when the chip is built. This part cannot be
erased or altered after fabrication.

Fig 1.10.1(c)

1.11. Explain external memory access in 8051
• The 8051 can address external memory if there is not enough internal RAM and/or

ROM.
1. External RAM or (Off-chip RAM)
• The 8051 has external RAM of 64k bytes.
• The range of external data memory is from 0000H to FFFFH.
• This memory space is used for storing data so frequently called as data memory.

2. External ROM or (Off-chip ROM)
• The 8051 MC has 64k bytes of external program memory.

1‐32 Architecture of Microcontroller 8051

Maanya’s M.G.B Publications Microcontrollers

• Fig. 1.11 shows the map of 8051 program memory.

• The control pin EA (pin 31) determines the accessing of either internal or external
ROM.

 CCVEA = 0EA =

Fig. 1.11

• Let EA pin is at CCV means that upon reset the 8051 access the on-chip RAM first
(0000 H – 0FFF H) and when reaches (to 0FFF H) end of the on-chip ROM it
switches to off-chip ROM (1000H – FFFFH). This type of accessing is widely used in
practice.

• If EA pin is grounded then only external (off-chip) ROM of 64 KB space can be
accessed by the Program Counter.

Do You Know?
External data memory:

1. To access external data memory , microcontroller use the Pins .WRorRD

2. The external data memory is accessed by using DPTR.
3. The external data memory is accessed using indirect addressing mode only.
4. To access the external data memory MOVX instruction is used.
5. MOVX means Move External. This instruction will transfer data between the

accumulator and a byte of external data memory.
6. Access to external data memory can use either one byte address [@ Ri where Ri can

be either R0 or R1 of the selected register bank] or two byte address [@ DPTR].
7. Accumulator is always the destination or source during external data RAM accesses.
External program memory:

1‐33Architecture of Microcontroller 8051

Maanya’s M.G.B Publications Microcontrollers

8. The MOVC instructions can be used to access the internal or external program
memory.

9. It is accessed by the DPTR and PC only
10. It is accessed by using indexed addressing mode.
11. The External Code memory can be used not only for storing the program (code), but

also for lookup table of different functions required for specific task. Mathematical
functions such as Square root, Sine, quadratic equations etc. can be stored in the
code memory (internal or External) and these functions can be accessed by using
MOVC instruction.

12. To access external code (program) memory PSEN (program store enable) is used as
read strobe.

13. External program memory (ROM) is accessed under two conditions:

 a) Whenever 0EA = (or)
 b) Whenever PC contains a number that is larger than 0FFFH.

1.12. Explain various ports of 8051.
• The 8051 has four input /output ports.
• The 8051 has a group of 32 I/O pins configured as four 8- bit parallel ports named

as P0, P1, P2 and P3 .
• All four ports are bidirectional, i.e, each pin will be configured as input or output

(or both) under software control.
• Each port consists of a latch, an output driver and an input buffer.
• All the ports are configured as input upon the RESET of 8051 and ready to be used

as input ports.
• In order to change them as an output ports, they must be programmed. In addition

to the I/O nature, these lines also have some specific functions.
• The following two instructions are used to make the Port 0 as an output port.

MOV A, #00H 00 H loaded in to A-register.

MOV P0, A Making Port 0 as an output port while writing 0s (0000 0000).

• The following two instructions are used to make the Port 0 as an input port.

MOV A, #0FFH FF H loaded in to A-register.

MOV P0, A Making Port 0 as an input port while writing 1s (1111 1111).

1‐34 Architecture of Microcontroller 8051

Maanya’s M.G.B Publications Microcontrollers

1. Port 0 (P0)
• It is designated as P0; the bits of port 0 are designated as P0.0 to P0.7.
• It is a bit as well as byte addressable register.
• Port 0 pins are also named as AD0-AD7 i.e. the pins of Port 0 allowed to use as

address as well as data pins depends upon the status of the ALE signal.
• It has dual function.
• The internal RAM address of Port 0 is 80H.
• Port 0 is used as:

o Input port for transferring data from peripherals to microcontroller.
 (or)
o Output port for transferring data from microcontroller to peripherals.
 (or)
o Lower order address bus (A0 to A7) for external memory.
 (or)
o Data bus (D0 to D7) for external memory.

*Note: To use the pins of port 0 as both input and output, each pin must be connected
externally to a 10 kΩ pull-up resistor.

Fig 1.12

Note: The ports P1, P2 and P3 do not require any pull-up resistors since they already
have pull-up resistors internally.
2. Port 1 (P1)
• It is designated as P1; the bits of port 1 are designated as P1.0 to P1.7.
• Port 1 has mono function i.e. it is used as input or output port.

1‐35Architecture of Microcontroller 8051

Maanya’s M.G.B Publications Microcontrollers

• It is a bit as well as byte addressable register.
• The internal RAM address of Port 1 is 90H.
• It can be accessed by direct or indirect address modes.
• The port 1 does not need any pull-up resistors since it already has built in pull up

resistors internally.
• When the microcontroller is reset, port 1 is configured as an input port.

3. Port 2 (P2)
• It is designated as P2, the bits of port2 are designated as P2.0 to P2.7.
• Port 2 has dual function, i.e. Port 2 can be used as I/O port as well as higher order

address bus (A8 to A15) .
• When external memory is interfaced with 8051, Port2 pins can’t be used as I/O port

it works as higher order address bus (A8-A15).
• It is a bit as well as byte addressable register.
• The internal RAM address of Port 2 is 0A0H.
• It can be accessed by direct or indirect address modes.
• The port2 does not need any pull-up resistors since it already has built in pull up

resistors internally.
• All the pins of port2 are compatible with TTL circuits.
• When the microcontroller is reset, port 2 is configured as an input port.

Note: Port 2 is used as:
o Input port

(or)
o Output port

(or)
o High-order address bus (A8 to A15) for external memory.

4. Port 3 (P3)
• It is designated as P3; the bits of port3 are designated as P3.0 to P3.7.
• Port 3 also have dual functions.
• Similar to the Port 1 and Port 2, the Port -3 also can be used as input or output.

However Port-3 lines are commonly used for special functions. The special function
of Port-3 was mentioned in below table.

• It is a bit as well as byte addressable register.
• The internal RAM address of Port 3 is 0B0H.
• It can be accessed by direct or indirect address modes.

1‐36 Architecture of Microcontroller 8051

Maanya’s M.G.B Publications Microcontrollers

• The port3 does not need any pull-up resistors since it already has built in pull up
resistors internally.

P3.0 RXD Serial data input

P3.1 TXD Serial data output

P3.2 0INT External interrupt 0

P3.3 1INT External interrupt 1

P3.4 T0 External timer 0 input

P3.5 T1 External timer 1 input

P3.6 WR External memory write signal

P3.7 RD External memory read signal

Note:
1. RxD and TXD pins are used as input and output pin if 8051 is operated in serial data

transmission mode.
2. Through T0 and T1 pins the external clock pulse are given to counter 0 and counter

1 respectively for counter operation.

1.13. Explain counters & timers in 8051

Fig 1.13(a)

1. 8051 has two 16-bit timer/counters, designated as Timer 0(T0) and Timer 1(T1).
They can be used as timers or counters.

2. Since the 8051 is an 8-bit controller, the 16-bit timer/counter registers are divided
into two 8-bit registers called the timer low (TL0, TL1) and high (TH0, TH1) bytes.

 Fig.1.13(b)

1‐37Architecture of Microcontroller 8051

Maanya’s M.G.B Publications Microcontrollers

 Fig. 1.13(c)
3. A timer always counts up. It doesn’t matter whether the timer is being used as a

timer, a counter, or a baud rate generator: A timer is always incremented by the
microcontroller.

4. Two SFRs TMOD (Timer Mode Control SFR) and TCON (timer control SFR) are
used to monitor the nature of working of timer/counters.

5. The timers can be configured to operate either as timers or event counters. The
timer/counter mode is selected by the control bit C/ T in the special function
register TMOD.

6. Counters are used to count the events where as timers are used to maintain time
delays between the actions.

7. In timer mode, it will count the internal clock frequency of the 8051 divided by 12 d.
The register is incremented for every machine cycle.

8. In counter mode, the register is incremented in response to 1 to 0 transition at its
corresponding external input pins 0T and 1T .

Additional fig:1.13(d) Timer /Counter control logic circuit

1.13.1. Operational Modes of Timers
Timer has four modes of operation. The modes of operation of the timer is

depends on the bits of the TMOD register.
a) Mode 0 Operation
• In this mode timer can acts as 13 bit timer.
• Here 8 bits of TH0 and 5 bits of TL0 or 8 bits of TH1 and 5 bits of TL1 are alone

used. TL (TL0 or TH0) will count from 0 to 31.
• For the next count, it will “reset” to 0 and increment TH. Thus, effectively, only 13

bits of the 16 bit timer are being used: bits 0-4 of TL and bits 0-7 of TH.

1‐38 Architecture of Microcontroller 8051

Maanya’s M.G.B Publications Microcontrollers

Fig. 1.13.1(a)

• Internal clock pulses are divided by 12 counter and fed to one input of AND gate.
• Whenever TR is set by the program the counting starts. When the count reaches

1FFFH (8192D) the overflow flag sets.
Note: If a 13-bit timer has an initial value of 0000, the overflow flag will set to 1 after
8192 machine cycles.
b) Mode 1 Operation
• In this mode timer can acts as 16 bit timer.
• Here both the registers TL and TH are used to hold the 16-bit value. TL is

incremented from 0 to 255. When TL reaches 255 it resets and causes TH to be
incremented by 1. Thus both the registers are used effectively to hold 16-bit value.

Fig. 1.13.1(b)

 TF will set when timer rolls over from FFFF to 0000.
c) Mode 2 Operation

Fig. 1.13.1(c)

• The mode 2 operation is called 8-bit auto reloaded mode. In this mode TH holds the
“reloaded value” and TL is the timer itself.

• The timer register TL is loaded with value between 00 and FF. Once TL is loaded
with a value, a copy of this value will be stored in TH.

• When the timer operation starts TL starts counting up from the set value. Once TL
value reaches FF, the initial value stored in TH will be automatically reloaded into
the TL register and the TL starts its operation once again automatically.

1‐39Architecture of Microcontroller 8051

Maanya’s M.G.B Publications Microcontrollers

• TF goes high when timer rolls over from FFH to 00H.
d) Mode 3 Operation
• In this mode timer 0 is configured as two separate 8 bit timers and timer-1 is

stopped.
• The 0TL is functioned as 8 bit timer and controlled by timer 0 control bits i.e., 0TR

and 0TF of TCON.

• The 0TH is functioned as 8 bit timer and controlled by timer 1 control bits 1TR and

1TF of TCON.
Do You Know?
1. Since the timer T0 is virtually 16-bit register, the largest value it can store is 65 535.

In case of exceeding this value, the timer will be automatically cleared and counting
starts from 0. This condition is called an overflow.

1.14. Explain serial input/output of 8051
• The 8051 is a 8 bit microcontroller and it transfer 8-bit data simultaneously. This is

the parallel I/O mode. It is an expensive method as it requires eight transmission
lines between sender and receiver.

• Particularly it is very difficult to adopt this parallel data transfer mode in long
distance communication.

• In situations, the Serial Input and Output mode is used, whereby one bit at a time is
transferred over a single line.

• The serial input output port provides serial data transfer. Serial data
communication is one of the effective ways of transmitting and receiving data bits
between computer systems.

• The serial port of 8051 provides full duplex data communication.
• It can transmit and receive data simultaneously.
• The 8051 has a serial data communication circuit (UART: Universal Asynchronous

Transmitter and Receiver) that uses;
o Register SBUF to hold data.
o Register SCON controls data communication.
o Register PCON controls data rates.
o Pins RXD (P3.0) and TXD (P3.1) connect to the serial data network.

• The 8051 provides four programmable modes for serial data communication.
• A particular mode can be selected by setting the SM0 and SM1 bits in SCON. The

mode selection also decides the baud rate.

1‐40 Architecture of Microcontroller 8051

Maanya’s M.G.B Publications Microcontrollers

SM0 SM1 Mode Function

0 0 0 Shift register, baud rate = f/12

0 1 1 8-bit UART, baud rate= variable

1 0 2 9-bit UART; baud rate = f/32 or f/64

1 1 3 9-bit, UART : baud rate =variable

1.15. Explain interrupts in 8051
• An interrupt is a signal either from hardware or from a program that interrupts the

normal processing of the CPU.
• Upon receiving an interrupt signal, the microcontroller interrupts whatever it is

doing and serves the device.
• The program associated with the interrupt is called interrupt service routine (ISR)

or interrupt handler.
• When an interrupt is invoked, the microcontroller runs the interrupt service

routine.
• The 8051 provides 5 interrupts.
• 2 interrupts are external interrupts and the remaining 3 are internal interrupts.

These are :

o External Interrupts: INT0 & INT1 .
o Internal Interrupts: Timer 0, Timer 1 serial communication.

Fig 1.15

1‐41Architecture of Microcontroller 8051

Maanya’s M.G.B Publications Microcontrollers

1. External interrupts
o The external interrupts are provided by the external circuitry connected between

the pins 0INT and 1INT of the 8051.
o Memory locations 0003H and 0013H in the interrupt vector table are assigned to

0INT and 1INT respectively.
2. Internal interrupts
 a) Timer interrupts:

o Two interrupts are set aside for the timers: one for Timer 0 and one for Timer1.
o Timer 0 and Timer 1 interrupts are generated by TF0 and TF1 in their respective

timer/counter registers.
o Memory locations 000BH and 001BH in the interrupt vector table belong to timer0

and timer 1 respectively.
b) Serial port interrupt:

o Serial communication has a single interrupt that belongs to both receive and
transmit.

o The serial port interrupt is generated by the logical OR of RI and TI.
o The interrupt vector table location 0023H belongs to this interrupt.

3. Vector address and the Priorities of the interrupts
• Each interrupt has its own program, known as ISR, which was stored from a

predetermined location.
• All the interrupts of 8051 are vectored interrupts. That means, when an interrupt

occurs, the control of microcontroller is automatically transferred to its service sub
routine (ISR).

• There are five vector addresses for five interrupts fixed by the manufacturer.
• If more than one interrupts are occurred simultaneously, the microcontroller will

service the interrupts according to their priority.
• The vector address and the priorities of the interrupts of 8051 are listed in table.

Interrupt Vector address Priority

External interrupt 0 (INT0) 0003H (Highest)

(Lowest)

Timer 0 interrupt (TF0) 000BH

External interrupt 1 (INT1) 0013 H

Timer 1 interrupt (TF1) 001BH

Serial port interrupt (RI OR TI) 0023H

1‐42 Architecture of Microcontroller 8051

Maanya’s M.G.B Publications Microcontrollers

*Note:

1. For example, if INT0 and TF1 are activated at a time then the 8051 will
respond to INT0 initially as it has higher priority than TF1.

2. The priorities of the interrupts can also be altered by programming the IP
register.

3. The external interrupts can be programmed to be either level active or
transition activated by setting or clearing the bit IT1 or IT0 in register TCON.

4. All the interrupts of 8051 are maskable interrupts. It means that all the
interrupts of 8051 can be individually enabled or disabled by setting or
clearing a bit in IE SFR. The IE register contains also an interrupt disable bit
EA, which disables all interrupts when it is 0.

5. In order to handle five interrupts the 8051 use SFRS, such as IE, IP and TCON.

Review Questions
1. Draw the pin-out diagram of 8051 and label the names.

 [April -2012]
2. List any six special function registers of 8051 microcontroller.

 [April/May-2015, April -2008]
3. Explain input/output ports of 8051

 [Oct/Nov-2011]
4. List the interrupts in 8051 microcontroller

 [March/April-2014]
5. Draw the functional block diagram of 8051. Explain the functions of each block.

 [Apirl/May-2015, 2014, 2013; Oct/Nov-2013]

6. Explain memory organization of 8051
 [Apirl-2012; Oct/Nov-2011]

7. Explain the internal RAM-organization in 8051
 [April-2012]

8. Explain the pin diagram of 8051 microcontrollers.
 [April-2008, 2009]

9. Explain the internal memory organization of 8051.
 [April-2012]

10. Explain the function of various special function registers.
 [Oct/Nov-2011]

11. Explain the following:
a) Timers/ Counters of 8051
b) Input/ Output ports
c) Interrupts of 8051

 [March/April-2013]

OBJECTIVES

2.1 State the need for an instruction set.
2.2 Write the instruction format of 8051 & illustrate these terms by writing an

instruction.
2.3 Explain fetch cycle, execution cycle and instruction cycle.
2.4 Distinguish between machine cycle and T-state.
2.5 Explain the timing diagram for memory write & Memory read operation

of 8051
2.6 Define the terms machine language, assembly language, and

mnemonics.
2.7 Write the differences between machine level and assembly level

programming.
2.8 Classify the instruction set of 8051.
2.9 Explain one byte, two byte and three byte instructions of 8051.
2.10 List the various addressing modes of 8051and Explain with examples.
2.11 Explain data transfer instructions of 8051.
2.12 Explain the arithmetic instructions and recognize the flags that are set

or reset for given data conditions.
2.13 Explain the logical instructions and recognize the flags that are set or

reset for given data conditions.
2.14 Explain bit-level logical instructions.
2.15 Explain Boolean group of instructions.
2.16 Explain unconditional & conditional jump instructions.

Instruction set of 8051
 2	

2‐2 Instruction set of 8051 microcontroller

Maanya’s M.G.B Publications Microcontrollers

2.1. State the need for an instruction set.
• Instruction set is also called a command set. Instruction set means a group of

instructions that a microcontroller understand.
• The instruction set of a microcontroller used to allow efficient control of both its

internal devices and the surrounding infrastructures (i.e. those devices are
connected to the ports of the microcontroller).

• Control of the register set of the microcontroller in an easy manner.
• Ability to access ports and other peripheral control and status registers.
• Ability to be able to access individual bits of a port or special function registers.
• Ability to access internal and external memory.

2.2. Write the instruction format of 8051 & illustrate these terms
by writing an instruction.
• A set of rules defining the way the operands, data and addresses are arranged in an

instruction is known as instruction format.
• An instruction is a command given to the microcontroller to perform a given task on

specified data. Each instruction has two parts as shown in fig. 2.2.
• Each instruction has two parts consists of two parts, they are opcode and operand

.The fig. shows the general format of the instruction.

Fig. 2.2

1. Operation code (op-code)
• The part of the instruction that specifies the operation to be performed is called the operation

code or op-code.

2. Operand
• The data on which the operation is to be performed is called the operand.
• Operand consists two fields, such as Destination and Source.
• The destination field may be a register or an address or port /port address or a

memory location. Destination field specifies the destination for the data that is
being copied form the source.

• Let us consider an instruction CPL A. The meaning of this instruction is
complementing the contents of accumulator. In this instruction CPL is op-code and
accumulator (A) is an operand.

2‐3Instruction set of 8051 Microcontroller

Maanya’s M.G.B Publications Microcontrollers

Examples:
Instruction

Comment
Op-code Operand
ADD A,Rn Add register Rn to Accumulator.
MOV A,#data Move immediate data to Accumulator.
MOV direct,Rn Move register Rn to direct byte.
CLR bit Clear direct bit.
SJMP rel Jump if Carry is set.

2.3. Explain fetch cycle, execution cycle and instruction cycle.
The total time required to perform the execution of an instruction is known as the

instruction cycle. Every instruction is consists of two parts i.e., opcode and operand.
Therefore the instruction cycle is broken into two time intervals known as Fetch cycle
and Execute cycle.
1. Fetch cycle
 The time taken by the 8051 for fetching an opcode is known as Fetch cycle. During
the fetch cycle, an instruction byte containing the operation code is brought into the
microcontroller from memory.

(or)
It is the time required to bring an instruction byte containing the operation code

from the memory into the microcontroller. A typical fetch cycle is shown in the fig.
2.3.(a).

The entire operation of fetching an op code takes three states (S) or six clock
cycles (P).

Fig. 2.3.(a)

*Note:
The fetch operation can be explained by a simple algorithm.

1. Begin
2. Send the address of an instruction to memory.
3. Read the instruction from the memory.

2‐4 Instruction set of 8051 microcontroller

Maanya’s M.G.B Publications Microcontrollers

4. Transfer the instruction to the microcontroller.
5. END

2. Execute Cycle (EC)
It is the total time required to decode the instruction fetched and execute it. If the

operand is in memory, execution is immediately performed.
Note that if an instruction contains data or operand and address which are still in

the memory, the processor has to perform one or two memory read operations to get the
desired data. A typical execute cycle is shown in the fig. 2.3(b).

The time required for an execute cycle will depends on the instruction type.

Fig. 2.3(b)

*Note:
It is explained by a simple algorithm.

1. Begin
2. Decode the instruction fetched
3. If operand is in memory, fetch the operand
4. Execute the instruction
5. End.

3. Instruction Cycle
It is the time required for the microcontroller to complete the execution of an

instruction. An instruction cycle consists of a fetch cycle and execute cycle i.e. IC = FC +
EC.

Fig. 2.3(c)

2‐5Instruction set of 8051 Microcontroller

Maanya’s M.G.B Publications Microcontrollers

2.4. Distinguish between machine cycle and T-state.
The external basic operations performed by the microcontroller are called machine

cycles. The 8051 microcontroller takes one to four machine cycles to execute an
instruction.

The basic timing of the 8051 machine cycle is shown in fig. 2.4. The entire timing of
a machine cycle of 8051 is divided into 6-states and they are denoted as S1, S2, S3, S4, S5
and S6. The timing of each state is two clock periods and they are denoted as P1 and P2.

A state in a machine cycle is a basic time interval for discrete operation of the
microcontroller such as fetching an op-code byte, decoding an op-code, excluding an op-
code, writing a data, etc.

Fig. 2.4

The time taken to execute a machine cycle is 12 clock periods and so time taken to
execute an instruction is obtained by multiplying the number of machine cycles of that
instruction by 12 clock periods.

Instruction execution time = C × 12 × T = C × 12 ×
f
1

Where, C = Number of machine cycles of an instruction
 T = Time period of crystal frequency in seconds
 f = Crystal frequency in Hz.
*Note:

1. If the oscillator frequency is 12 MHz, then the time taken to execute one
machine cycle is 1 microsecond.

2. An 11.0592 MHz crystal yields a cycle frequency of 921.6 kilohertz, which can
be divided evenly by the standard communication baud rates of 19200, 9600,
4800, 2400, 1200 and 300 Hz.

3. The 8051 microcontroller has four machine cycles and they are:
a) External program memory fetch cycle
b) External data memory read cycle
c) External data memory write cycle
d) Port operation cycle.

2‐6 Instruction set of 8051 microcontroller

Maanya’s M.G.B Publications Microcontrollers

4. In fig. 2.4 there are two ALE pulses per machine cycle. The ALE pulse, which is
primarily used as a timing pulse for external memory access, indicates when
every instruction byte is fetched.

5. Two bytes of single instruction may thus be fetched, and executed, in one
machine cycle.

6. Single byte instructions are not executed in a half cycle, however single byte
instructions “throw away” the second byte (which is first of the next
instruction). The next instruction is then fetched in the following cycle.

2.5. Explain the timing diagram for memory write & Memory read
operation of 8051
1. Interfacing External Program (ROM) Memory
 In 8051 when the EA pin is connected to CCV , program fetches to addresses

0000H through 0FFFH are directed to the internal ROM and program fetches to
addresses 1000H through FFFFH are directed to external ROM/EPROM. On the other
hand when EA pin is grounded, all addresses (0000H to FFFFH) fetched by program are
directed to the external ROM/EPROM. The PSEN signal is used to activate output
enable signal of the external ROM/EPROM, as shown in fig. 2.5(a).

Fig. 2.5(a)

Fig. 2.5(b)

2‐7Instruction set of 8051 Microcontroller

Maanya’s M.G.B Publications Microcontrollers

 The circuit arrangement for connecting external program memory is shown in fig.
2.5(a).
• The port 0 is used as a multiplexed address/data bus. It gives lower order 8-bit

address in the initial T-cycle and later it is used as a data bus.
• The 8-bit address is latched using external latch and ALE signal generated by 8051.
• The port 2 provides the higher order 8-bit address.
• The timing waveforms for external memory read cycle, is as shown in fig. 2.5(b).

2. Interfacing External Data (RAM) Memory

Fig. 2.5(c)

Fig. 2.5(d)

8051 can address up to 64 Kbytes of external data memory. The “MOVX” instruction is
used to access the external data memory.

The circuit arrangement for connecting external data memory is shown in fig.
2.5(c).
• The multiplexed address/data bus provided by port 0 is demultiplexed by external

latch and ALE signal.

2‐8 Instruction set of 8051 microcontroller

Maanya’s M.G.B Publications Microcontrollers

• Port 2 gives the higher order address bus.
• The RD and WR signals from 8051 selects the memory read and memory write

operation, respectively.
• Now the timing waveforms of external data memory for read and write cycles are as

shown in fig. 2.5(d) and fig. 2.5(e) respectively.

Fig. 2.5(e)

2.6. Define the terms machine language, assembly language,
and mnemonics.

When anyone wants to communicate to any other person then a language is
followed. So if we want to communicate with computer system then we have to use
computer language.

The microcomputer programming languages can be divided into the following
three types.

1. Machine language
2. Assembly language
3. High Level language

*Note: The machine language and assembly language are considered as low level
language.
1. Machine language
 A program written in the form of 0s & 1s is called machine language also known
as binary language as only two bits are being used. To write a program in machine
language programmer has to memorize the hundreds of binary instruction codes for a
processor. This task is difficult and error prone.
 For example, for INTEL 8051 to add the contents of register A and register R7, the
binary code is 0010 11112(2FH). To move the content of register R7 to register A the
binary code is 1110 11112(EFH). Thus by observing the two examples, it is very difficult
for the programmers, to write a program in machine language.

2‐9Instruction set of 8051 Microcontroller

Maanya’s M.G.B Publications Microcontrollers

However this language is preferred for simple programs and control applications
where less computation is required..
Characteristics:

1. Easily understood by the computer system.
2. Very fast in execution and no need of hardware/ circuits/ Compiler/

Assemblies.
3. Difficult to write and understand.
4. Difficult to debug.
5. Very slow to enter.
6. Not readable.
7. Machine dependent.

2. Assembly language
A program written in mnemonics is known as assembly language program.

Mnemonic is a group of alphabets which suggest operation to be performed by that
instruction. A few examples are ADD for addition, XCH for exchange, and MOV A, Rn
transfer data from register Rn to accumulator.

The writing of program in assembly language is much easier as compared to the
writing of a program in machine language. The machine and assembly language
instructions are specific to each microcontroller; they are not transferable to other
microcontroller. In some times it is also called as one to one language since each
mnemonic refers to unique operation.
Characteristics:

1. Very easy to read
2. Easy to debug
3. Easy to write
4. It is not portable i.e. the programs written for one microcomputer cannot be

used for any other because each computer has its own assembly language.
5. It is machine dependent
6. It requires assembler to convert it into machine language.

3. High level language
The disadvantages of assembly languages are overcome using high level

languages. Instructions written in high level language are called statements rather
mnemonics. In a high level language statements more clearly resemble English and
Mathematics than mnemonics. FORTRAN, BASIC, COBOL, C, C++, PASCAL are some of
the examples of high level languages.

Programs written in this language for one type of computer can easily be used for
any other type of computer. Thus the programs written in high languages are portable.
The programs writing in these languages are easier and faster because one statement of

2‐10 Instruction set of 8051 microcontroller

Maanya’s M.G.B Publications Microcontrollers

high level language correspond too many instructions of assembly languages. The
programs written in high level languages are converted to machine level before
executing them. This is done by either compilers or interpreters.

Compiler: A program that translates a high level language program into a
machine language program is called a compiler. A compiler is more powerful than
assembler.

Interpreter: It is also a translator. It translates a high level language program into
object codes, statement wise. It does not translate the entire program at a time. It takes
up one statement of a high level language program at a time, translates it and then
executes it. It is slower than a compiler.

2.7. Write the differences between machine level and assembly
level programming.
S.No. Machine Language Assembly Language High-Level Language

1 Language consists of binary
codes which specify the
operation.

Language consists of
mnemonics which specify
the operation.

Language consists of
English-like statements
which specify more-than
one operations.

2 Processor dependent and
hence requires knowledge
of internal details of
processor to write a
program.

Processor dependent and
hence requires knowledge
of internal details of
processor to write a
program.

Independent of
processor.

3 Programs require less
memory.

Programs require less
memory.

Programs require more
memory.

4 Programs have less
execution time.

Programs have less
execution time.

Programs have more
execution time.

5 Program development is
difficult.

Program development is
similar than machine
language.

Program development is
easy.

6 It is not user friendly. It is less user friendly. It is user friendly.

2.8. Classify the instruction set of 8051.
Different microcontroller architecture use different instruction sets. But all

members of the MCS-51 family execute the same instruction set. The MCS-51 instruction
set is optimized for 8-bit control applications. The 8051 has 111 instructions: 49 single
byte, 45 two byte and 17 three byte.

2‐11Instruction set of 8051 Microcontroller

Maanya’s M.G.B Publications Microcontrollers

Based on function the 8051 instruction set is classified into the following 5 groups:
1. Data transfer group - 28
2. Arithmetic group - 24
3. Logical group - 25
4. Branch group - 17
5. Boolean group - 17

2.9. Explain the terms operation code and operand and illustrate
these terms by writing an instructions
Explain one byte, two byte and three byte instructions of 8051.
• The fig. shows the general format of the instruction. It consists of two parts, they

are opcode and operand.

Fig.

• Opcode: operation code. It is the portion of a instruction, that specifies the
operation to be performed.

• Operand: The second part of the instruction is called the operand, indicating the
information needed by the instruction in carrying out its task. Operand consists
two fields, such as Destination and Source.

• The destination field may be a register or an address or port /port address or a
memory location. Destination field specifies the destination for the data that is
being copied form the source.

• Based on length the 8051 instruction set is classified into the following 3 groups:
1. One byte instructions - 49
2. Two byte instructions - 45
3. Three byte instructions - 17

a. One byte instructions
 A one byte instruction includes the op-code and operand in the same byte. Thus
these instructions occupy one memory location as shown in fig. 2.9(a).

Fig. 2.9(a)

2‐12 Instruction set of 8051 microcontroller

Maanya’s M.G.B Publications Microcontrollers

In this format operand may be register/registers and in some cases it may be
absented or implicited.
Examples: INC A; ADD A,Rn; NOP.
b. Two Byte Instructions
 As the name indicates these instructions occupy two memory locations as shown
in fig. 2.9(b).

Fig. 2.9(b)

The first byte always indicates the op-code and second byte is either immediate
data, direct address, bit address or relative address of the operand. This is illustrated as
shown in the below table.

Two byte instruction format Examples

Op-code immediate data

ADD A,#data

Op-code direct address

ADD A,direct

Op-code bit address

ANL C,bit

Op-code relative address

DJNZ Rn,rel

c. Three Byte Instructions
 This type of instructions occupy three bytes i.e. three memory locations as shown
in fig. 2.9(c).

Fig. 2.9(c)

The first byte indicates the op-code. The second and third bytes may indicate
address and/or data. This is illustrated as shown in the below table.

Three byte instruction format Examples

Op-code immed data15-8 immed data7-0

MOV DPTR,#data16

Op-code addr15 - addr8 Addr7 - addr0

LCALL addr16

2‐13Instruction set of 8051 Microcontroller

Maanya’s M.G.B Publications Microcontrollers

Op-code dir addr(dest) dir addr(scr)

MOV direct,direct

Op-code direct address Immediate data

MOV direct,#data

Op-code immediate data Relative address

CJNE A,#data,rel

Op-code direct address Relative address

CJNE A,direct,rel

Op-code bit address Relative address

JB blt,rel

*Note:
Except arithmetic group of instructions, remaining group of instructions will have

one or two instructions of three byte length.

2.10. List the various addressing modes of 8051and Explain with
examples.

Each instruction requires certain data on which it has to operate. The data could be
in register/registers, in memory or an immediate value. The various ways of accessing
data are called the addressing modes. The 8051 microcontroller has the following
addressing modes.

1. Immediate addressing mode
2. Direct addressing mode
3. Register addressing mode
4. Register indirect addressing mode
5. Indexed addressing mode
6. Register specific addressing mode

1. Immediate Addressing mode
 In this addressing mode the source operand is a constant, i.e. immediate data (8-bit
or 16-bit).
Examples:

MOV A,#47 H Load 47H in to A.
MOV R4,#67H Load 67H in to R4.
MOV DPTR,#8500H DPTR = 5800H.

*Note:
1. The immediate data must be preceded by the pround sign #.
2. Using this addressing mode we can load data into any of the registers, including

the DPTR.
3. This is the easiest addressing mode to transfer the data to destination.

2‐14 Instruction set of 8051 microcontroller

Maanya’s M.G.B Publications Microcontrollers

4. The general format of immediate addressing mode is
MOV A, #nH : Where ‘n’ is the 8-bit data
MOV DPTR, #nnH : Where ‘nn’ is the 16-bit data

MOV R3,
#125H

It is illegal instruction because source and destination sizes are mismatched i.e.
R3 is a 8-bit register data is 12-bits

MOV 35H,
#R2

It is illegal instruction because source should not be register it should be data.

MOV R0,
33H

It is not the example of immediate addressing mode instruction because there is
missing of symbol ‘#’.

2. Direct Addressing mode
 In direct addressing the operand is specified by an 8-bit address filed in the
instruction.
 This mode is used to access data either in the internal RAM (128 bytes) or SFRs.
Examples:

MOV R0,40H Save content of RAM location 40H in R0.
MOV 56H,A Save content of A in RAM location 56H.
MOV R4,7FH Move contents of RAM location 7FH to R4.

*Note:
1. Only internal data RAM and SFRs can be directly addressed. Although the entire

128 bytes of RAM can be accessed using direct addressing mode, it is most often
used to access RAM locations 30-7FH.

2. This is due to the fact that register bank locations are accessed by the register
names of R0-R7, but there is no such name for other RAM locations 30-7FH.

3. Stack in 8051 uses only direct addressing modes i.e. Only direct addressing mode
is allowed for pushing or popping the stack

4. The general format of the Direct Addressing Mode is

PUSH
A

It is an invalid instruction because push and pop Instructions must be use
direct addressing mode. PUSH 05EH is the valid instruction.

3. Register Addressing mode
Register addressing mode involves the use of registers to hold the data to be

manipulated.
In this mode the data, which the instruction operates on, A,B, DPTR or is in one of

eight registers labeled R0 to R7 (Rn, in general).

2‐15Instruction set of 8051 Microcontroller

Maanya’s M.G.B Publications Microcontrollers

Examples:
MOV A,R0 Copy the contents of R0 in to A.
MOV R2,A Copy the contents of A in to R2.
ADD A,R7 Add the contents of R7 to contents of A.

Do You Know?:
1. The source and destination registers must match in size.
2. The movement of data between Rn registers is not allowed.
3. The general format of Register addressing mode is
4. MOV Rd, Rs where Rd is destination register and Rs is source register
5. MOV DPTR,A; Illegal instruction because the source and destination registers are

mismatched in size
6. MOV R1,R2 ; Illegal instruction because, The movement of data between

Registers of Register bank is not allowed
4. Register Indirect Addressing mode
 In indirect addressing, the instruction specifies a register which contains the
address of the operand. Both internal and external RAM can be indirectly addressed.
Examples:
MOV A,@R0 Move contents of RAM location whose Address is held by R0 into

A.
MOV @ R1,0F0H Move contents of B (0F0)into RAM location whose address is held

by R1.
MOVX @ DPTR,A Writes the contents of the accumulator to the address held by the

DPTR register.
*Note:

1. If the data is inside the CPU, only registers R0 and R1 are used for this purpose.
When R0 and R1 are used as pointers, that is, when they hold the address of
RAM location, there must be preceded by the @ sign. In the absence of the “@”
sign, MOV will be interpreted as an instruction moving the contents of register
R0 to A, instead of the contents of the memory location pointed to by R0

2. The external RAM can be addressed indirectly through DPTR.
5. Indexed Addressing mode
 Only program memory can be accessed with indexed addressing. Either the DPTR
or PC can be used as an index register.
Examples:
MOVC A, @A+DPTR Copy the code byte found at the ROM address formed by

adding A and the DPTR to A.

2‐16 Instruction set of 8051 microcontroller

Maanya’s M.G.B Publications Microcontrollers

MOVC A, @A+PC Copy the code byte found at the ROM address formed by
adding A and the (PC +1).

6. Reregister Specific Addressing mode
In this addressing mode the instructions always operates on implied register

such as A or DPTR. Therefore no operands have to be specified.
Examples:
RR
A

This instruction operates only on the accumulator. This instruction when
executed rotates the contents of accumulator one bit towards right.

DAA Decimal Adjustment Accumulator.

Additional Information
THE 8051 INSTRUCTION SET

 The Inlet 8051 has excellent and most powerful instruction set offers possibilities in
control area, serial I/O, arithmetic, byte and bit manipulation. It has 111 instructions.
 The most widely used registers of the 8051 are A (address is 0E0, B (0F0), R0, R1,
R2, R3, R4, R5, R6, R7. DPTR [DPH (83). DPL (82)]. PC (No address) SP (81).
 Based on the operation performed by the instruction, the instruction set is divided
into (i) Data move (ii) Arithmetic, (iii) Logic (iv) Call and Jump.
 The following symbols and abbreviations are used in the subsequence description
of 8051 instructions.
Acronyms
Rn Register R7-R0 of the currently selected Register Bank.
direct 8-bit internal data location’s address. This could be an Internal Data RAM

location (0-127) or a SFR [i.e.,I/O port, control register, status register, etc.,
(128-255)].

@Ri 8-bit internal data RAM location (0-255) addressed indirectly through
register R1 or R0

#data 8-bit constant included in instruction
data 16 16-bit constant included in instruction
addr 16 16-bit destination address. Used by LCALL & LJMP. A branch can be

anywhere within the 64K- byte Program Memory address space.
addr 11 11-bit destination address. Used by ACALL & AJMP. The branch will be

within the same 2K-byte page of program memory as the first byte of the
following instruction.

rel Signed (two’s complement) 8-bit offset byte. Used by SJMP and all
conditional jumps. Range is-128 to +127 bytes relative to first byte of the
following instruction.

2‐17Instruction set of 8051 Microcontroller

Maanya’s M.G.B Publications Microcontrollers

bit Direct Addressed bit in Internal Data RAM or Special Functional Register.
CY The Carry flag
lsn Least significant nibble
msn Most significant nibble
[]: If the condition inside the brackets is true. THEN the action listed will

occur, ELSE go to the next instruction
∧ External memory location
() Contents of the location inside the parentheses

Instruction Flag

Instruction Flag
CY OV AC CY OV AC

ADD X X X CLR C 0
ADDC X XX X CPL C X
SUBB X X X ANL C, bit X
MUL 0 X ANL C,/bit X
DIV 0 X ORL C, bit X
DA X ORL C,/bit X
RRC X MOV C, bit X
RLC X CJNE x
SETB C 1

2.11. Explain data transfer instructions of 8051.

1. This group of instructions copies data from one location called source to another

location called destination.
2. In this operation source content remains unchanged and destination contains the

content of source.

2‐18 Instruction set of 8051 microcontroller

Maanya’s M.G.B Publications Microcontrollers

3. The data transfer may be between A↔ registers, register↔ internal memory
location, external data (immediate data) to a register or internal memory location
and A ↔ external memory location.

4. During the execution of data transfer instructions “no flags are affected”.

 1. MOV A, Rn
Description • Move the contents of register Rn into accumulator.

• Rn presents register from R0 to R7 of currently selected bank.
Operation (A)← (Rn)
Example MOV A, R2

Note: The content of accumulator is changed after execution but
contents of R2 remain as it is. This means contents of destination
always change after data transfer instruction is executed.

2. MOV A, # data
Description Move an immediate data into accumulator.

Note:
1. Immediate data is always presented by # in the instruction
2. The immediate data in this instruction is always an 8-bit.
3. Immediate data can never be a destination.

Operation (A) ← data
Example

2‐19Instruction set of 8051 Microcontroller

Maanya’s M.G.B Publications Microcontrollers

3. MOV A, direct
Description The content of memory location (internal RAM/SFR) whose

address is specified directly in the instruction is moved to
accumulator.

Operation (A)←(direct = 8-bit address of i-RAM/SFR)
Example MOV A, 40H: The contents of memory location 40 H are moved

into accumulator.

Note: Parenthesis () means ‘contents of’

4. MOV A, @Ri
Description Move the contents of internal RAM memory location whose

address is specified by Ri to accumulator.
Note: In this indirect addressing mode, the registers used are
only R0 and R1.

Operation (A)←((Ri))
Example

5. MOV Rn, A
Description Move the contents of accumulator into register Rn.
Operation (Rn)← (A)
Example MOV R5, A

2‐20 Instruction set of 8051 microcontroller

Maanya’s M.G.B Publications Microcontrollers

6. MOV Rn, #data
• Description Move an immediate data into register Rn.

• Operation (Rn) ← data

• Example MOV R2, # 97 H

7. MOV Rn, direct
Description The content of memory location (internal RAM/SFR) whose address is

directly specified in the instruction is moved to register Rn, where Rn
is any one of the 8 register of the currently selected register bank.

Operation (Rn) ← (direct)
Examples • MOV R3, 42: Move the contents of memory location addressed 42

into R3 i.e. (42)→ R3.

8. MOV direct, A
Description The content of accumulator is moved to a memory location

(internal RAM/SFR) whose address is directly specified in the
instruction.

Operation (direct) ← (A)
Example MOV 40H, A: The content of accumulator is moved to memory

location 40 H.

9. MOV direct,Rn
Description The content of register Rn is moved to memory location (internal

RAM/SFR) whose address is directly specified in the instruction.
Operation (direct) ← (Rn)
Examples MOV 55H, R7

2‐21Instruction set of 8051 Microcontroller

Maanya’s M.G.B Publications Microcontrollers

10. MOV direct, #data
Description An immediate data is moved into internal RAM memory location

whose address is specified directly in the instruction.
Note: The destination can be SFR also.

Operation (direct) ← data
Example MOV 38H, #90H: Move 90 H into RAM location having address

38 H.

11. MOV direct, direct
Description The content of one internal RAM/SFR is moved to another

internal RAM/SFR. The address of the source and destination
are directly specified in the instruction.

Operation (direct) ← (data)
Example MOV 0A8 H, 78H: Move the contents of RAM location 78H into

A8H which is Interrupt Enable (IE) register.

12. MOV direct, @Ri
Description The content of internal RAM whose address is specified by

Ri is moved to another internal RAM/SFR whose address is
directly specified in the instruction. The register Ri can be
either R0 or R1.

Operation (direct) ← ((Ri))
Example

2‐22 Instruction set of 8051 microcontroller

Maanya’s M.G.B Publications Microcontrollers

13. MOV @Ri, A
Description The content of accumulator is moved to an internal RAM location whose

address is specified by Ri register. The register Ri can be either R0 or R1.
Operation ((Ri)) ← (A)
Example MOV @ R0,A

14. MOV @Ri, #data
Description The immediate data given in the instruction is moved to an

internal RAM location whose address is specified by Ri
register. The register Ri can be R0 or R1.

Operation ((Ri)) ← data
Example MOV @ R0,44H

15. MOV @Ri, direct
Description The content of internal RAM/SFR whose address is directly

specified in the instruction is moved another internal RAM
location whose address is specified by Ri register. The
register Ri can be either R0 or R1.

Operation ((Ri)) ← (direct)
Example

16. MOV DPTR, #16 bit data
Description Move 16 bit immediate data into data pointer register

(which is a 16 bit register).
Note: This is the instruction which deals with 16 bit data
transfer.

Operation (DPTR) ← 16 bit data
Example MOV DPTR, #8000H

2‐23Instruction set of 8051 Microcontroller

Maanya’s M.G.B Publications Microcontrollers

17. MOVX A, @Ri
Description Move the contents of external RAM memory location whose

address is specified by register Ri into accumulator.
Note:
1. While accessing external RAM, Ri can address 256 bytes
and DPTR can address 64 K bytes.
2. MOVX instruction is used to access external RAM or I/O
addresses.
3. There are two sets of RAM addresses between 00H and
FFH, one for internal 8051 RAM and another for RAM
external to 8051.

Operation (A) ← ((Ri)) Ext
Example MOVX A, @R1

18. MOVX A, @DPTR
Description Move the contents of the external RAM memory location

whose address is specified by data pointer (DPTR) into
accumulator.
Note: In external moves the data transfer is only between
memory and accumulator.

Operation (A) ← ((DPTR))
Example

19. MOVX @ DPTR, A
Description Move the contents of accumulator into external RAM

memory location whose address is specified by data pointer
(DPTR).

Operation ((DPTR)) ← (A)
Example MOVX @ DPTR,A

2‐24 Instruction set of 8051 microcontroller

Maanya’s M.G.B Publications Microcontrollers

20. MOVC A, @A + DPTR
Description Move the contents of the external ROM memory location

whose address is formed by adding the accumulator
contents with the contents of DPTR.
Note: This instruction is called as move code byte, the C in
MOVC indicates that it’s a code byte.

Operation A ← ((A + DPTR))
Example MOVC A, @ A + DPTR.

This instruction copies the code byte found at the external
ROM address formed by adding A and the DPTR, i.e. at an
address (1200H +61H) 1261 H to A.

21. MOV A,@ A+PC
Description Move the contents of the external ROM memory location

whose address is formed by adding the accumulator
contents with the contents of program counter (PC).
Note: Destination is always an accumulator.

Operation (PC) ←(PC)+1
(A) ← ((A)+(PC))

Example Let the contents of PC are 4000 H and contents of A are 50H.
MOVC A, @ A + PC.
This instruction copies the code byte found at the external
ROM address formed by adding A and the PC, i.e. at an
address (4000 H + 50 H) 4050 H to A.

2‐25Instruction set of 8051 Microcontroller

Maanya’s M.G.B Publications Microcontrollers

22. PUSH direct
Description • The stack pointer is incremented by one.

• PUSH the contents of internal RAM memory
location/SFR on to the stack addressed by stack pointer
(SP).

Note:
1. The stack is internal RAM area only.
2. PUSH and POP instructions are used to move the data

between internal RAM stack and internal RAM.
Operation 1)SP()SP(+←

)direct())SP((←

Example PUSH 0F0H
This instruction increments the stack pointer by one and
stores the contents of register B (0F0H) to the internal RAM
location addressed by the stack pointer (SP).

2‐26 Instruction set of 8051 microcontroller

Maanya’s M.G.B Publications Microcontrollers

23. POP direct
Description • This instruction moves the contents of stack addressed by

stack pointer (SP) to the internal RAM/SFR (Whose address
is given within the instruction).

• Stack pointer is decremented by one.

Note:

1. When stack reaches to FF H it rolls over to 00 H.
2. RAM ends at 7F. So pushing the stack contents above 7F

will result in errors.
3. Stack should be normally initialized above the register

banks.
4. Only address and not register names are used in the

instruction.
Operation))SP(()direct(←

1)SP()SP(−←

Example POP 0E0H
This instruction copies the contents of the internal RAM location
addressed by the stack pointer to the accumulator (0E0H). Then
the stack pointer is decremented by one.

24. XCH A, Rn
Description • XCH stands for exchange.

• Exchange data bytes between register Rn and A.
Note: All exchanges are internal to 8051 and with register A only
(accumulator)

Operation (A) ↔ (Rn)
Example Initially assume Accumulator = 20H and Register R5=45H. After

executing the instruction XCH A, R5 the accumulator =45H and

2‐27Instruction set of 8051 Microcontroller

Maanya’s M.G.B Publications Microcontrollers

Register R5=20H.

25. XCH A, direct
Description Exchange the contents of direct address (8 bit) and accumulator.
Operation (A) ↔ (direct)
Example XCH A, 30 H: The contents of 30 H (address of internal RAM)

and accumulator are exchanged.

26. XCH A, @Ri
Description Exchange the contents of internal RAM location whose address is

stored either in Ri and accumulator.
Operation ((Ri)) ↔ (A)
Example XCH A, @R0

27. XCHD A, @Ri
Description Exchange the lower nibble (lower four bits) in accumulator and

lower nibble of contents of address in register Ri.
Note: The upper nibbles remain un-exchanged.

Operation ((Ri))0-3 ↔A0-3
Example

2‐28 Instruction set of 8051 microcontroller

Maanya’s M.G.B Publications Microcontrollers

Summary of Data transfer instructions of 8051

Instructions

Operation
Description

Data Moving Instructions
1. MOV A,Rn (A) ← (Rn) Move register to Accumulator.

2. MOV A,direct (A) ← (direct) Move direct byte to Accumulator.

3. MOV A,@Ri (A) ← ((Ri)) Move indirect RAM to
Accumulator.

4. MOV A,#data (A) ← data Move immediate data to
Accumulator.

5. MOV Rn,A (Rn) ← (A) Move Accumulator to register.

6. MOV direct,@Ri (direct) ← ((Ri)) Move indirect RAM to direct byte.
7. MOV DPTR,#data16 (DPTR) ←data16 Load Data Pointer with a 16-bit

constant.
External Data Memory Accessing Instructions

8. MOVX A,@DPTR (A) ← ((DPTR)) Move external RAM (16-bit addr) to
A.

9. MOVX @DPTR,A ((DPTR)) ← (A) Move A to external RAM (16-bit
addr).

External Program Memory Accessing Instructions
10. MOVC A,@A+DPTR (A) ← ((A) + (DPTR)) Move Code byte relative to DPTR to

A.
11. MOVC A,@A+PC (PC) ← (PC)+1

(A) ← ((A)+(PC))
Move Code byte relative to PC to A.

PUSH & POP Instructions
12. PUSH direct

(SP)← (SP)+1
((SP)) ← (direct)

Push direct byte onto stack.

13. POP direct (direct)← ((SP))
(SP)← (SP)-1

Pop direct byte from stack.

Data Exchange Instructions
14. XCH A,Rn (A) ↔ (Rn) Exchange register with

Accumulator.
15. XCHD A,@Ri ((Ri0-3)) ↔ (A0-3) Exchange low-order digit indirect

RAM with A.

2‐29Instruction set of 8051 Microcontroller

Maanya’s M.G.B Publications Microcontrollers

2.12. Explain the arithmetic instructions and recognize the flags
that are set or reset for given data conditions.

1. This group of instructions performs arithmetic operations such as addition, subtraction,

multiplication, division, increment, decrement and decimal adjustment operations on the 8-
bit data present in registers or in memory locations.

2. All the additions are done with the A register as the destination of the result.
3. Add, subtract, increment and decrement instructions use one of the four addressing modes

each: register, immediate, direct, and indirect.
4. There are two sets of addition instructions: add without carry and add with carry. There is

only one set of subtract with borrow, subtract without borrow can be done in two steps-CLR
C and then SBBB.

5. The 8051 has four arithmetic flags: the Carry (CY), Auxiliary Carry (AC), Overflow (OV)
and Parity (P). The CY, AC and OV flags are set to 1 or cleared to 0 automatically,
depending on the outcomes of the certain instructions.

6. The parity flag is affected by every instruction executed.
a) Parity flag will be set to 1 for odd number of 1’s in A register and will be set to 0

for even number of 1’s in A register.
b) All 0’s in A register is considered as even number of 1’s and set P flag to 0.

1. ADD A, Rn
Description The content of register Rn is added with contents of A and result is stored

in register A.
Note: Flags are affected.

Operation (A) ← (A)+(Rn)
Example

2‐30 Instruction set of 8051 microcontroller

Maanya’s M.G.B Publications Microcontrollers

2. ADD A, #data
Description An immediate 8 bit number is added with contents of accumulator and

result is stored in accumulator.
Operation (A)← (A) + data
Example

3. ADD A, direct
Description The contents of internal RAM location specified is added with

accumulator and result is stored in accumulator
Operation (A)← (A) + (direct)
Example

4. ADD A, @Ri
Description The content of memory location whose address is in register Ri is added

with contents of register A and result is stored into accumulator.
Operation (A)← (A) + ((Ri))
Example

2‐31Instruction set of 8051 Microcontroller

Maanya’s M.G.B Publications Microcontrollers

5. ADDC A, Rn
Description Add contents of accumulator, register Rn and carry and store the result

into accumulator.
Operation (A)← (A) +(CY)+ (Rn)
Example ADDC A, R5

6. ADDC A, # data
Description Add accumulator, immediate data (8-bit) and carry and store the result

into accumulator.
Operation (A)← (A) + (CY) + data
Example ADDC A, #5

 A = 01000001
 CY = 0
 R5 = 0000 0101
After executing the instruction: ADDC A, #5
 A = 01000110; CY = 0

7. ADDC A, direct
Description Add accumulator, contents of RAM address () and carry and store the

result into accumulator.
Operation (A)← (A) + (CY) + (direct)
Example ADDC A, 41H

 A = 00100011; CY = 1;
Location 41H = 00100000
After executing the instruction: ADDC A, 41H
 A = 01000100 = 44H; CY = 0

2‐32 Instruction set of 8051 microcontroller

Maanya’s M.G.B Publications Microcontrollers

8. ADDC A, @Ri
Description Add accumulator, the contents of the address stored in register Ri, and

carry and sum is stored in accumulator.
Operation (A)← (A) + (CY) + ((Ri))
Example ADDC A, @R0

 A= 00110011; CY = 1; R0 = 45H;
 @R0 = 01000000
After executing ADDC A; @ R0 instruction
 A = 01110100; CY = 0

9. SUBB A, Rn
Description The contents of register Rn and a carry (borrow) flag are subtracted from

accumulator and result is stored in accumulator.
Operation (A)← (A) - (CY) - (Rn)
Example

10. SUBB A, #data
Description An immediate number is subtracted from accumulator with carry

(borrow) flag.
Operation (A)← (A) - (CY) - data
Example SUBB A, #32H

Initially, A register = 85H and CY = 0. After executing SUBB A, # 32H the
accumulator will hold the result 53H, in it and the CY flag is made zero.
 A = 1 0 0 0 0 1 0 1
 CY = 0
 1 0 0 0 0 1 0 1
 32H = 0 0 1 1 0 0 1 0
 = 0 1 0 1 0 0 1 1 = 53H

2‐33Instruction set of 8051 Microcontroller

Maanya’s M.G.B Publications Microcontrollers

11. SUBB A, direct
Description The contents of RAM location and a carry (borrow) flag are subtracted

from accumulator and result is stored in accumulator.
Operation (A)← (A) -(CY)-(direct)
Example SUBB A, 32H

Let us assume that, A register = 86H and internal memory location 32H
contains 30H and CY = 1. After executing SUBB A, 32H instruction the
accumulator is loaded with 55H and the memory location content remains
same.
 A = 1 0 0 0 0 1 1 0
 CY = 1
 1 0 0 0 0 1 0 1
(32H) = 30H= 0 0 1 1 0 0 0 0
 = 0 1 0 1 0 1 0 1 = 55H

12. SUBB A, @Ri
Description The contents of address which is stored in Ri and a carry (borrow) flag are

subtracted from accumulator and result is stored in accumulator.
Operation (A)← (A) - (CY) - ((Ri))
Example SUBB A, @R0

Assume that, A register = 74H, CY = 1, R0 register = 23H, Internal
Memory (23H) = 32H. After executing SUBB A, @R0 the accumulator
contains 41H, the internal memory content remains same and CY flag is
cleared.
 A = 74 H = 0 1 1 1 0 1 0 0
 CY = 1
 0 1 1 1 0 0 1 1
 (R0) = (23) = 32 = 0 0 1 1 0 0 1 0
 A = 0 1 0 0 0 0 0 1=41H

INC A
Description The content of accumulator is incremented by 1.
Operation (A) ← (A) + 1
Example: 1 Assume initially A = 40H. After executing INC A instruction, the

accumulator will contain 41H.

2‐34 Instruction set of 8051 microcontroller

Maanya’s M.G.B Publications Microcontrollers

Example: 2

INC Rn
Description The content of specified register is incremented by 1.
Operation (Rn) ← (Rn) + 1
Example Assume initially R5 = 22H. After executing INC R5, the register R5 will

have 23H.

INC direct
Description The content of RAM/SFR (whose address is directly given in the

instruction) is incremented by 1.
Operation (direct)← (direct) + 1
Example Assume initially the internal memory location 40H contains data 50H.

After executing INC 40H, the location will have the updated value 51H.

INC @Ri
Description The content of memory location whose address is stored in Ri is

incremented by 1.
Operation ((Ri)) ← ((Ri)) +1
Example Assume the pointer R0 contains 23H and the internal memory location

23H contains 40H. After executing INC@R0, the internal memory location
23H will have the updated value 41H.

INC DPTR
Description The content of 16-bit DPTR (Data Pointer) is incremented by 1.
Operation (DPTR)← (DPTR) +1
Example: 1 Registers DPH and DPL contain 14H and FFH respectively. The execution

of INC DPTR instruction will change DPH and DPL to 15H and 00H
respectively.

2‐35Instruction set of 8051 Microcontroller

Maanya’s M.G.B Publications Microcontrollers

Example: 2

DCR A
Description The content of accumulator is decremented by 1.
Operation (A)← (A) -1
Example Let us assume A = 42H. After executing the instruction DEC A, the

accumulator will contain 41H.

DCR Rn
Description The content of specified register is decremented by 1.
Operation (Rn)← (Rn) - 1
Example Let us assume R5 contains 45H. After executing the instruction DEC R5,

the register R5 will contain 44H.

DCR direct
Description The content of RAM/SFR (whose address is directly given in the

instruction) is decremented by 1.
Operation (direct)← (direct) -1

Example Assume initially the internal memory location 41H contains data 51H.
After executing DEC 41H, will have the location will have the updated
value 50H.

DCR @Ri
Description The content of memory location whose address is stored in Ri is

decremented by 1.
Operation ((Ri)) ← ((Ri)) - 1
Example Assume the pointer R1 contains 24H and the internal memory location

24H contains 56H. After execution of DEC@R1, the internal memory
location 24H will have the updated value 55H.

2‐36 Instruction set of 8051 microcontroller

Maanya’s M.G.B Publications Microcontrollers

MUL AB
Description Multiply two unsigned numbers stored in accumulator and register B.

Register B is for such purposes only. The lower byte of the result is
stored in accumulator and higher byte in register B.

Operation Low order byte in A←(A) × (B)
High order byte in B

Example 1:

Example 2:

Example 3:

Example 4:

MOV A, # 5d
MOV B, # 7d
MUL AB ; A = 35d = 23H, B= 0 0

MOV A, # 10d
MOV B, #15d
MUL AB ; A = 150d = 96H, B = 0 0
Note: This instruction always clears the CY flag; however, OV is changed
according to the product. If the product is greater than FFH, OV = 1;
otherwise, it is cleared (OV = 0).

MOV A, #25H
MOV B, # 78H
MUL AB ; A = 58H B=11H, CY = 0 and OV = 1
 ; (25H x 78H = 1158H)

MOV A, #100d
MOV B, #200d
MUL AB ; A = 20H B=4EH, OV = 1 and CY = 0
 ; (100 x 200 = 20,000 = 4E20H)
Note:

1. When A = FFH; B = FFH. The largest possible product is obtained
i.e., FE01H.

2. Register A contains 01H and register B contains FEH after
multiplication of FFH by FFH.

3. The OV flag is set to al that register B contains the high-order-byte
of the product, the Carry flag is 0.

4. There is no comma between A and B in the MUL mnemonic.

2‐37Instruction set of 8051 Microcontroller

Maanya’s M.G.B Publications Microcontrollers

DIV AB
Description The unsigned number in accumulator is divided by the unsigned

number in register B. The integer part of the quotient is in register A and
integer part of remainder is in B.
Note:

1. The Carry flag (CY) is always cleared.
2. The overflow flag (OV) is set if division by 0 was attempted,

otherwise it is cleared.
Operation AB← (A)/(B)

(A)← Quotient
(B) ← Remainder

Example 1:

Example 2:

MOV Ax 35d
MOV B, #10d
DIV AB ; A = 3d and B = 5d

MOV A, #97H
MOV B, #12H
DIV AB ; A = 8d and B = 7d
Notice in this instruction that the carry and OV flags are both cleared,
unless we divide A by 0, in which case the result is invalid and OV = 1 to
indicate the invalid condition.

A = 45H ; B = 00

2‐38 Instruction set of 8051 microcontroller

Maanya’s M.G.B Publications Microcontrollers

Example 3: DIV AB
After executing the instruction the value in register A and B are
undefined and the OV flag is set to high to indicate an invalid result.
Notice that CY is always 0 in this instruction.
Note:

1. The original contents of A and B are lost
2. There is no comma between A and B in the DIV mnemonic

DAA
Description Decimal Adjust Accumulator after addition. When we add two numbers

the result is in binary, to adjust the result in BCD (Decimal) DAA is used
followed by ADDI or ADDC. As we know that after adding, if the lower
four bits is greater than 09 then 06 is added, if upper four bits greater
than 09 then 60 is added to adjust the result in BCD
(Take example of 8085 DAA instruction) CY, AC and OV flag area
affected.

Operation If (A3-0)>9 or (AC)=1 then(A3-0) ← (A3-0) + 06
If (A7-4)>9 or (CY)=1 then(A7-4) ← (A7-4) + 06

Example 1:

Example 2:

Example (i): If A = 23; B = 14. After addition the result is 37. In this case
BCD addition and hexadecimal addition results are same.

IF A = 23; B = 48. After addition the result is 6B. This is the hexadecimal
result where as BCD result is 7.
In order to obtain BCD result there is an instruction available labeled as
DAA instruction. A DAAA instruction is useful in decimal arithmetic.
The performance of DAA instructions is given below.

2‐39Instruction set of 8051 Microcontroller

Maanya’s M.G.B Publications Microcontrollers

2‐40 Instruction set of 8051 microcontroller

Maanya’s M.G.B Publications Microcontrollers

Summary of Arithmetic instructions of 8051

Instructions

Operation Description

Addition Instructions
1. ADD A,Rn (A) ← (A)+(Rn) Add register to Accumulator.

2. ADD
A,#data

(A) ← (A) + data Add immediate data to Accumulator.

3. ADDC A,Rn (A) ← (A) +(CY)+ (Rn) Add register to Accumulator with carry.

Subtraction Instructions
4. SUBB A,Rn (A) ← (A) - (CY) - (Rn) Subtract Register from ACC with borrow.

5. SUBB
A,#data

(A) ← (A) - (CY) - data Subtract immediate data from ACC with
borrow.

Incrementing & Decrementing Instructions
6. INC A (A) ← (A) + 1 Increment Accumulator.

7. DEC A (A) ← (A) - 1 Decrement Accumulator.

8. INC DPTR (DPTR) ← (DPTR) +1 Increment Data Pointer.

Multiplication & Division Instructions
9. MUL AB Low order byte in A←(A) × (B)

High order byte in B

Multiply A and B.

2‐41Instruction set of 8051 Microcontroller

Maanya’s M.G.B Publications Microcontrollers

10. DIV AB Quotient in A←(A) ÷ (B)
Reminder in B

Divide A by B.

Decimal Arithmetic Operation Instruction
11. DA A If (A3-0)>9 or (AC)=1 then(A3-0) ←

(A3-0) + 06
If (A7-4)>9 or (CY)=1 then(A7-4) ← (A7-

4) + 06

Decimal Adjust Accumulator.

2.13. Explain the logical instructions and recognize the flags that
are set or reset for given data conditions.

1. This group of instructions perform various logical operations AND, OR, EX-OR,
rotate, clear and complement.

2. For the instructions RLC, RRC, and CPL only carry flag is affected.
3. For the instruction CLR the carry flag is set to 0.
4. These instructions use one of the four addressing modes each: register, immediate,

direct and indirect.
5. The A register or a direct address in internal RAM is the destination of the logical

operation result.
6. Keep in mind that all such operations are done using each individual bit of the

destination and source bytes. These operations, called byte-level Boolean operations.

ANL A, Rn
Description The content of register Rn is ANDed with accumulator and result is

stored in accumulator.
Operation (A) ← (A) AND (Rn)

2‐42 Instruction set of 8051 microcontroller

Maanya’s M.G.B Publications Microcontrollers

Example: 1

Example: 2

A = 00100010; R0 = 00100010
ANL A, R0
After execution A⇐00100000

ANL A, direct

Description The content of accumulator is ANDed with the content of RAM location
whose address is specified in the instruction. The result is stored in
accumulator.

Operation (A) ← (A) AND (direct)
Example: 1

A = 00100010 & Location 41 = 00110100
ANL A, 41H
After execution A⇐00100000
The content of location 41H remains same.

Example: 2

ANL A, @ Ri
Description The content of accumulator is ANDed with the content of memory

location whose address is stored in either R0 or R1 register. The result is
stored in accumulator.

Operation (A) ← (A) AND ((Ri))
Example A = 00110010

2‐43Instruction set of 8051 Microcontroller

Maanya’s M.G.B Publications Microcontrollers

Content of R0 = 45
Content of RAM address at
45 = 00010010
ANL A, @ R0
After execution, A = 00010010
The content of memory location pointed by R0 remains same.

ANL A, # data
Description An immediate data is ANDed with contents of accumulator and result is

stored in accumulator.
Operation (A) ← (A) AND data
Example A =32H= 00110010

Data =31H= 00110001
ANL A, #31H
After execution of this instruction, A ⇐00110000 ⇐30H

ANL direct, A
Description The content of accumulator is ANDed with direct memory location

contents and result is stored in direct memory location.
Operation (direct)← (direct) AND (A)
Example Acc = 01000001 = 41H;

Location 23 = 00110010 = 32H
ANL 23H, A
After execution of this instruction, the location 23H contains zero.
In this instruction, the specified internal memory location 23H is the
destination.

ANL direct, # data
Description An immediate data is ANDed with direct memory location contents and

result is stored in direct memory location.
Operation (direct)← (direct) AND data
Example Location 51H = 01000001 = 41;

data = 01000101 = 45
ANL 51H, #45
After execution of this instruction, the location 51H contains the result
41H.

2‐44 Instruction set of 8051 microcontroller

Maanya’s M.G.B Publications Microcontrollers

ORL A, Rn
Description The content of register Rn is ORed with accumulator and result is stored

in accumulator.
Operation (A)← (A) OR (Rn)
Example Acc = 01011010

R1 = 10110000
ORLA, R1
After execution of this instruction Acc = 11111010 = FA.

ORL A, direct
Description The content of accumulator is ORed with the content of RAM location

whose address is specified in the instruction. The result is stored in
accumulator.

Operation (A)← (A) OR (direct)
Example Acc = 01011100 = 5C

Direct = 43
Content of 43 = 00001100 = 0C
ORLA, 43
After execution of this instruction A becomes 0101100 = 5C.

ORL A, @ Ri
Description The content of accumulator is ORed with the content of memory location

whose address is stored in either R0 or R1 register. The result is stored in
accumulator.

Operation (A)← (A) OR ((Ri))
Example: 1 Acc = 10101010; R0 = 43

Content of RAM address 43 = 00001000
ORLA, @ R0
After execution of this instruction, A=10101010 = AA

Example: 2

2‐45Instruction set of 8051 Microcontroller

Maanya’s M.G.B Publications Microcontrollers

ORL A, # data
Description An immediate data is ORed with contents of accumulator and result is

stored in accumulator.
Operation (A)← (A) OR data
Example: 1 Acc = 01001100 = 4C

Data n = 01000011 = 43
ORL A, # 43
After execution of this instruction A becomes 01001111 = 4F

Example: 2

ORL direct, A
Description The content of accumulator is ORed with direct memory location

contents and result is stored in direct memory location.
Operation (direct)← (direct) OR (A)
Example A = 67H = 0110 0111

RAM address F0 content = 44H = 0100 0100
ORL F0, A
After executing this instruction F0 = 01100111 = 67H

2‐46 Instruction set of 8051 microcontroller

Maanya’s M.G.B Publications Microcontrollers

ORL direct, # data
Description An immediate data is ORed with direct memory location contents and

result is stored in direct memory location.
Operation (direct)← (direct) OR data
Example Assuming that RAM location 32H has the value 67H, ORL32H, #29

After execution: RAM location 32H: 6F

XRL A, Rn
Description The content of register Rn is XORed with accumulator and result is

stored in accumulator.
Operation (A) ← (A) XOR (Rn)
Example XRL A, R5

XRL A, direct
Description The content of accumulator is XORed with the content of RAM location

whose address is specified in the instruction. The result is stored in
accumulator.

Operation (A) ← (A) XOR (direct)
Example XRL A, 75H

XRL A, @Ri
Description The content of accumulator is XORed with the content of memory

location whose address is stored in either R0 or R1 register. The result is
stored in accumulator.

Operation (A) ← (A) XOR ((Ri))
Example XRL A, @R0

XRL A, # data
Description An immediate data is XORed with contents of accumulator and result is

stored in accumulator.
Operation (A) ← (A) XORD data
Example XRL A, 0FH

2‐47Instruction set of 8051 Microcontroller

Maanya’s M.G.B Publications Microcontrollers

XRL direct, A
Description The content of accumulator is XORed with direct memory location

contents and result is stored in direct memory location.
Operation (direct)← (direct) XOR (A)
Example

XRL direct, # data
Description An immediate data is XORed with direct memory location contents and

result is stored in direct memory location.
Operation (direct)← (direct) XOR data
Example:

CLR A
Description • Clear accumulator.

• All eight bits of accumulator are cleared to zero.
Operation (A)←0
Example Suppose A = 52 H, then after CLR A, A = 00 H

2‐48 Instruction set of 8051 microcontroller

Maanya’s M.G.B Publications Microcontrollers

CPL A
Description • Complement accumulator.

• The contents of accumulator are complemented i.e. 0 to 1 and 1 to 0.
Here all eights bits are complemented.

Operation (A)← (A)
Example Suppose A = 55 H then after CPL, A = AA

RL A
Description • Rotation accumulator left.

• Rotate one bit in A (i.e. accumulator) left. This means A7 comes in
A0, A0 in A1, A1 in A2 and so on.

Operation (An+1) ← (An)n=0-6 (A0) ← (A7)
Example: 1 Suppose A = 1C = 0001 1100

After RL A = A = 0011 1000 = 38 H
Example: 2

RLC A
Description • Rotate accumulator left through the carry flag.

• Rotate accumulator left by one bit through carry. This means A7 goes
into carry, carry into A0, A0 to A1, A1 to A2 and so on.

2‐49Instruction set of 8051 Microcontroller

Maanya’s M.G.B Publications Microcontrollers

Operation (An+1) ← (An)n=0-6 (A0) ← (C) (C) ← (A7)
Example: 1 Suppose A = 3A = 0011 1010 and CY = 1

Then, After RLC A 0111 0101 and CY = 0
Example: 2

RR A
Description • Rotate accumulator right.

• Rotate register A contents by one bit towards right. This means A0
goes into A7, A7 into A6, A1 into A0 and so on.

Operation (An) ← (An+1)n=0-6 (A7) ← (A0)
Example: 1 Suppose A = 1C = 0001 1100

Then, after RR A, A = 0000 1110 = 0E H

2‐50 Instruction set of 8051 microcontroller

Maanya’s M.G.B Publications Microcontrollers

Example: 2

RRC A
Description • Rotate accumulator right through carry flag.

• Rotate contents of accumulator right by one bit through carry. A0
goes into carry; carry into A7, A7 to A6 and so on.

 (An) ← (An+1)n=0-6 (A7) ← (C) (C) ← (A0)
Example: 1 Suppose A = 3A = 0 0 1 1 1010 and CY = 0

Then after RRC A = 0 0 0 1 1101 and CY = 0
Example: 2

2‐51Instruction set of 8051 Microcontroller

Maanya’s M.G.B Publications Microcontrollers

SWAP A
Description • Swap nibbles within the accumulator.

• Interchange the upper 4 bits (nibbles) and lower four bits in the
accumulator. This means D7 to D4 will go at D3 to D0 and D3 to D0
will go in place of D7 to D4.

Operation (A3-0) ↔ (A7-4)
Example: 1 Suppose A = 7D then after swap A = D7
Example: 2

Summary of Logic instructions of 8051
Instructions Operation Description

Byte level Logical Operations
1. ANL A,Rn (A) ← (A) AND (Rn) AND Register to Accumulator.

2. ANL A,direct (A) ← (A) AND (direct) AND direct byte to Accumulator.

3. ANL A,@Ri (A) ← (A) AND ((Ri)) AND indirect RAM to Accumulator.

4. ANL A,#data (A) ← (A) AND data AND immediate data to Accumulator.

5. ANL direct,A (direct)←(direct) AND (A) AND Accumulator to direct byte.

6. ANL direct,#data (direct) ← (direct) AND data AND immediate data to direct byte.

7. ORL A,Rn (A) ← (A) OR (Rn) OR register to Accumulator.

8. ORL A,direct (A) ← (A) OR (direct) OR direct byte to Accumulator.

9. ORL A,@Ri (A) ← (A) OR ((Ri)) OR indirect RAM to Accumulator.

10. ORL A,#data (A) ← (A) OR data OR immediate data to Accumulator.

11. ORL direct,A (direct) ← (direct) OR (A) OR Accumulator to direct byte.

12. ORL direct,#data direct) ← (direct) OR data OR immediate data to direct byte.

13. XRL A,Rn (A) ← (A) XOR (Rn) Exclusive-OR register to Accumulator.

14. XRL A,direct (A) ← (A) XOR (direct) Exclusive-OR direct byte to Accumulator.

15. XRL A,@Ri (A) ← (A) XOR ((Ri)) Exclusive-OR indirect RAM to Accumulator.

2‐52 Instruction set of 8051 microcontroller

Maanya’s M.G.B Publications Microcontrollers

16. XRL A,#data (A) ← (A) XORD data Exclusive-OR immediate data to Accumulator.
17. XRL direct,A (direct) ← (direct) XOR (A) Exclusive-OR Accumulator to direct byte.
18. XRL direct,#data direct) ← (direct) XOR data Exclusive-OR immediate data to direct byte.
19. CLR A (A) ←0 Clear Accumulator.

20. CPL A (A) ← (A) Complement Accumulator.

Rotate & Swap Instructions
21. RL A (An+1) ← (An)n=0-6

(A0) ← (A7)
Rotate Accumulator left.

22. RLC A An+1) ← (An)n=0-6
(A0)← (CY) & (CY) ← (A7)

Rotate Accumulator left through the carry.

23. RR A (An) ← (An+1)n=0-6
(A7) ← (A0)

Rotate Accumulator right.

24. RRC A (An) ← (An+1)n=0-6
(A7)←(CY) & (CY) ← (A0)

Rotate Accumulator right through the carry.

25. SWAP A (A3-0) ↔ (A7-4) Swap nibbles within the Accumulator.

2.15. Explain Boolean group of instructions.

1. In 8051, these instructions are more powerful and can perform clear, complement,

set, move operations on bit wise rather than on type of given data.
2. Certain internal RAM (bytes 20 to 2F) and SFRs (A, B, IE, IP, P0, P1, P2, P3, PSW,

TCON, and SCON) can be addressed by their byte addresses or by the address of
each bit within a byte.

3. The bit-level Boolean logical op-codes operate on any addressable RAM or SFR bit.
4. The carry flag (CY) in the PSW special function register is the destination for most of

the op-codes because the flag can be tested and the program flow is changed using
instructions.

2‐53Instruction set of 8051 Microcontroller

Maanya’s M.G.B Publications Microcontrollers

Mnemonic Operation Description
1. CLR C (C)← 0 Clear carry.

2. CLR bit (bit) ← 0
Note: bit=Address of particular bit of
RAM/SFR.

Clear direct bit.

3. SETB C (C)← 1 Set carry.

4. SETB bit (bit) ← 1 Set direct bit.

5. CPL C (C)←)C(Complement carry.

6. CPL bit bit←)bit(Complement direct bit.

7. ANL C,bit (C)← (C) AND (bit) AND direct bit to carry.

8. ANL
C, bit

(C)← (C) AND bit AND complement of direct bit to
carry.

9. ORL C,bit (C)← (C) OR (bit) OR direct bit to carry.

10. ORL C,
bit

(C)← (C) OR bit OR complement of direct bit to
carry.

11. MOV C,bit (C) ← (bit) Move direct bit to carry.

12. MOV bit,C (bit)← (C) Move carry to direct bit.

13. JC rel (PC) ← (PC)+2
If C= 1 then,
(PC) ← (PC)+rel

Jump if carry is set.

14. JNC rel (PC) ← (PC)+2
If C= 0 then,
(PC) ← (PC)+rel

Jump if carry not set.

15. JB bit,rel (PC) ← (PC)+3
If (bit)= 1 then,
(PC) ← (PC)+rel

Jump if direct bit is set.

16. JNB bit,rel (PC) ← (PC)+3
If (bit)= 0 then,
(PC) ← (PC)+rel

Jump if direct bit is not set.

17. JBC bit,rel (PC) ← (PC)+3
If (bit)= 1 then,
(bit) ← 0
(PC) ← (PC)+rel

Jump if direct bit is set and clear
bit.

2‐54 Instruction set of 8051 microcontroller

Maanya’s M.G.B Publications Microcontrollers

CLR C
• Description Clear carry bit, means carry flag is made 0.

CLR Bit
• Description Clear the addressed bit to 0. This works only with bit oriented register.

• Example CLR P 2.0 bit 0 in port 2 cleared.
Eg. CLR 7F, means clear Bit 7 of RAM byte 2F from 16 bytes of Bit
addressable RAM area.

SETB C
• Description Set Carry flag to 1.

SETB bit
• Description Set the addressed bit to 1.

• Example SETB 01, i.e. Bit 1 of RAM byte to 20 H.
SETB P1.2 i.e. bit D2 in port 1 is set to 1.

MOV C, b
• Description Copy the addressed bit in C.

• Example MOV C, PO.1
Copy bit 1 port 0 to Carry flag.
The contents of bit remains uncharged.

MOV b, C
• Description Move (copy) the carry to the addressed bit.

2.14. Explain bit-level logical instructions.
CPL C
• Description Complement the carry flag. If 1, make it 0 and vice versa.

CPL bit

2‐55Instruction set of 8051 Microcontroller

Maanya’s M.G.B Publications Microcontrollers

• Description Complement the addressed bit.

• Example CPL P1.0 : Complements the bit 0 from port 1.

ANL C, bit
• Description AND the carry bit and the addressed bit and put the result in carry bit.

• Example ANL C. 03
AND carry with bit 3 in 20 H RAM location.

ANL C, bit
• Description /bit means complement of bit. The carry bit and complement of

addressed bit is ANDed and result is stored in carry

• Example ANL C, P1.2 ; the second bit in port 1 is complemented and then
ANDed with carry bit.

ORL C, bit
• Description OR carry with the addressed bit and result of ORing stored in carry.

• Example ORL C, 07, i.e. bit 07 in location 20 H

ORL C, / bit
• Description Carry is logically ORed with complement of addressed bit and result

is back stored in C.

• Example ORL C, 07

Additional Information
Branch Control group of instructions of 8051

1. These instructions are used to change the normal sequence of a program, either

unconditionally or under certain test conditions.

2‐56 Instruction set of 8051 microcontroller

Maanya’s M.G.B Publications Microcontrollers

2. These instructions sometimes make use of the flags to change the sequence of
program.

3. Flags are not affected by any instruction.
4. For the instruction CJNE the carry flag is only affected.
5. The branch group mnemonics (17) are grouped in to the following types.
6. Jump and Call Instructions:

• The jump and call instructions are decision control group of instructions that
alter the flow of the program.

• A jump or call instruction can replace the contents of the program counter with
a new program address that causes program execution to begin at the code at
the new address.

• A jump permanently changes the contents of the program counter if certain
program conditions exist.

• A call temporarily changes the program counter to allow another part of the
program to run.

• Program has the following types of decision op-codes while writing program
to do certain task using microcontroller 8051.

o Jump on bit conditions
o Compare bytes and jump if not equal
o Decrement byte and jump if zero
o Jump unconditionally
o Call a subroutine
o Return from a subroutine

7. Range:
 The difference, in bytes, between new address from the address in the program
where the jump or call is located is called the range of the jump or call.
Example: For example, if a jump instruction is located at program address 0100H, and
the jump causes the program counter to become 0130H, then the range of the jump is
30H bytes.
8. Classification based on range:

o Relative range: Maximum of +127d, -128d bytes from the instruction following the
jump or call instruction

o Absolute range: Maximum of 2 K bytes from +127, -128d bytes from the
instruction following the jump or call instruction.

o 3) Long range: Maximum of 64K byte (any address from 0000H to FFFFH). Figure
3.1 shows the relative range of all the jump instructions.

2‐57Instruction set of 8051 Microcontroller

Maanya’s M.G.B Publications Microcontrollers

Mnemonic Operation Description

CALL & Subroutines
1. ACALL addr11 (PC) ← (PC)+2

(SP) ← (SP)+1
((SP)) ← PCL
(SP) ← (SP)+1
((SP))← PCH
(PC10-0)← addr11

Absolute subroutine call.

2. LCALL addr16 (PC) ← (PC)+3
(SP) ← (SP)+1
((SP))← (PCL)

(SP) ← (SP)+1
((SP))← (PCH)

(PC) ← addr16

Long subroutine call.

3. RET (PCH) ←((SP))
(SP) ← (SP)-1
(PCL) ← ((SP))
(SP) ← (SP)–1

Return from subroutine.

4. RETI (PCH) ←((SP))
(SP) ← (SP)-1
(PCL) ← ((SP))
(SP) ← (SP)–1

Return from interrupt.

5. AJMP addr11 (PC) ← (PC)+2
(PC10-0)← addr11

Absolute jump

Jump Instructions
6. LJMP addr16 (PC) ← addr16 Long jump.

7. SJMP rel (PC) ← (PC)+2
(PC) ← (PC)+offset

Short jump (relative addr).

8. JMP @A+DPTR (PC) ← ((A)+(DPTR)) Jump indirect relative to the
DPTR.

9. JZ rel (PC) ← (PC)+2
If (A)=0 then,
(PC) ← (PC)+rel

Jump if Accumulator is
zero.

10. JNZ rel (PC) ← (PC)+2
If (A)≠ 0 then,
(PC) ← (PC)+rel

Jump if Accumulator is not
zero.

2‐58 Instruction set of 8051 microcontroller

Maanya’s M.G.B Publications Microcontrollers

11. CJNE A,direct,rel (PC) ← (PC)+3
If (A) ≠ (direct) then,
(PC) ← (PC)+offset
If (A)<(direct) then, (C)← 1
If (A)>(direct) then, (C)← 0

Compare direct byte to A
and jump if not equal.

12. CJNE A,#data,rel (PC) ← (PC)+3
If (A) ≠ #data then,
(PC) ← (PC)+offset
If (A)<#data then, (C)← 1
If (A)>#data then, (C)← 0

Compare immediate to A
and jump if not equal.

13. CJNE Rn,#data,rel (PC) ← (PC)+3
If (Rn) ≠ #data then,
(PC) ← (PC)+offset
If (Rn)<#data then, (C)← 1
If (A)>#data then, (C)← 0

Compare immediate to
register and jump if not
equal.

14. CJNE @Ri,#data,rel (PC) ← (PC)+3
If ((Ri)) ≠ #data then,
(PC) ← (PC)+offset
If ((Ri))<#data then, (C)← 1
If (A)>#data then, (C)← 0

Compare immediate to
indirect and jump if not
equal.

15. DJNZ Rn,rel (PC) ← (PC)+2
(Rn) ← (Rn)-1

If (Rn) ≠ 0 then,
(PC) ← (PC)+rel

Decrement register and
jump if not zero.

16. DJNZ direct,rel (PC) ← (PC)+2
(direct) ← (direct)-1

If direct ≠ 0 then,
(PC) ← (PC)+rel

Decrement direct byte and
jump if not zero.

17. NOP (PC) ← (PC)+1 No operation.

2.16. Explain unconditional & conditional jump instructions.
2.16.1. Unconditional jump
 The unconditional jump is a jump in which control is transferred
unconditionally to the target location.

In 8051 there are 4 types of unconditional jump instructions. These are:
• AJMP adddr(11)
• LJMP adddr(16)

2‐59Instruction set of 8051 Microcontroller

Maanya’s M.G.B Publications Microcontrollers

• SJMP adddr(rel)
• JMP @A+DPTR

AJMP address 11
Description (Absolute jump) Jump to absolute (i.e in the range of 2k) as discussed

earlier. This jump is unconditional jump. This is two byte instruction in
which absolute address is written. After execution, program counter is
loaded by the jump address.

Operation (PC) ← (PC)+2
(PC10-0)← addr11

LJMP address 16
Description Jump to long address range (i.e. 16bit address). This is an unconditional

jump. This is three byte instruction. First is op-code followed by lower
and higher bytes of 16 bit address.

Operation (PC) ← addr16

SJMP rel
Description Jump to relative address (in the range of + 127 to – 128) specified in the

instruction. This is an unconditional jump and two byte instruction. First
is opcode and another specifies the address often called as short jump.

Operation (PC) ← (PC)+2
(PC) ← (PC)+offset

JMP @ A + DPTR
Description Jump to the address formed by adding A to the DPTR. This is single byte

unconditional jump. The address can be anywhere in program memory
(i.e. 16 bit add).
In this instruction neither A nor DTPR in changed.

Operation (PC) ← ((A)+(DPTR))

2.16.2. Conditional jump
JC rel

Description In the JC instruction, if CY = 1 it jumps to the target address. If CY = 0, it
will not jump but will execute the next instruction below JC.

Operation (PC) ← (PC)+2
If (CY)=1 then,
(PC) ← (PC)+rel

2‐60 Instruction set of 8051 microcontroller

Maanya’s M.G.B Publications Microcontrollers

JNC rel
Description In the JNC instruction, if CY = 0 it jumps to the target address. If CY = 1,

it will not jump but will execute the next instruction below JNC.
Operation (PC) ← (PC)+2

If (CY)=0 then,
(PC) ← (PC)+rel

JZ rel.

Description Jump to the relative address if a content of register A is 00H
(Accumulator is zero).

Operation (PC) ← (PC)+2
If (A)=0 then,
(PC) ← (PC)+rel

JNZ rel
Description Jump to the relative address if accumulator is not zero.
Operation (PC) ← (PC)+2

If (A)≠ 0 then,
(PC) ← (PC)+rel

CJNE A, direct, rel.
Description Compare contents of accumulator with the contents of direct address and

if not equal, then jump to relative address. Here the status of carry flag is
checked. If accumulator contents are less than direct address contents,
then carry flag is set otherwise it is reset.

Operation (PC) ← (PC)+3
If (A) ≠ (direct) then,
(PC) ← (PC)+offset
If (A)<(direct) then, (C)← 1
If (A)>(direct) then, (C)← 0

CJNE A, # data, rel.
Description The contents of register A is compared with immediate data and if not

equal then jump to relative address specified in the instruction. Carry
flag as explained earlier.

2‐61Instruction set of 8051 Microcontroller

Maanya’s M.G.B Publications Microcontrollers

 (PC) ← (PC)+3
If (A) ≠ #data then,
(PC) ← (PC)+offset
If (A)<#data then, (C)← 1
If (A)>#data then, (C)← 0

CJNE Rn, # data, rel.
Description Compare the contents of register Rn (R0 – R7) with immediate data

specified in the instruction and if not equal jump to specified relative
address. The status of carry flag is as explained in previous instructions.

Operation (PC) ← (PC)+3
If (Rn) ≠ #data then,
(PC) ← (PC)+offset
If (Rn)<#data then, (C)← 1
If (A)>#data then, (C)← 0

CJNE @ Ri, # data, rel.
Description Compare contents of the address contained in Ri with immediate

number (data) specified in the instruction and if not equal then jump to
specified address (relative).

Operation (PC) ← (PC)+3
If ((Ri)) ≠ #data then,
(PC) ← (PC)+offset
If ((Ri))<#data then, (C)← 1
If (A)>#data then, (C)← 0

DJNZ Rn, rel.
Description Decrement the contents of register Rn (RO…. R7) specified in the

instruction by one and jump to the relative address if register is not zero.
Here decrement and jump is performed in a single instruction. Whereas
in processor like 8085 two instructions are written.

Operation (PC) ← (PC)+2
(Rn) ← (Rn)-1
If (Rn) ≠ 0 then,
(PC) ← (PC)+rel

2‐62 Instruction set of 8051 microcontroller

Maanya’s M.G.B Publications Microcontrollers

DJNZ direct, rel.
Description Decrement the contents of direct address by one and if not zero jump to

relative address specified in the instruction.
Operation (PC) ← (PC)+2

(direct) ← (direct)-1
If direct ≠ 0 then,
(PC) ← (PC)+rel

Additional Information
Conditional Jump Instructions

Instruction Action
JZ Jumps if A = 0
JNZ Jumps if A ≠ 0
DJNZ Decrement and Jumps if register ≠ 0
CJNE A, data Jumps to the target address if A ≠ 0
CJNE reg, #data Jumps if byte ≠ #data
JC Jumps if CY = 1
JNC Jumps if CY = 0
JB Jumps if bit = 1
JNB Jumps if bit = 0
JBC Jumps if bit = 1 and clear bit

• All conditional jumps are short jumps
• It must be noted that all conditional jumps are short jumps, meaning that the

address of the target must be within -128 to +127 bytes of the contents of the
program counter (PC). This very important concept is discussed at the end of this
section.

OBJECTIVES

3.1. List the various symbols used in drawing flow charts.
3.2. Draw flow charts for simple problems.
3.3. Write programs in mnemonics to illustrate the application of data copy

instructions.
3.4. Illustrate the application of jump instruction in the program.
3.5. Write a program using counter techniques.
3.6. Write programs of instructions to perform single byte, double byte and

multi byte addition and subtraction.
3.7. Define a subroutine and explain its use.
3.8. Explain the sequence of program when subroutine is called and

executed.
3.9. Explain information exchange between the program counter and the

stack and identification of stack pointer register when a subroutine is
called.

3.10. Explain PUSH & POP instructions.
3.11. Illustrate the concept of nesting, multiple ending and common ending in

subroutines.
3.12. Use input/output, machine related statements in writing assembly

language programs.
3.13. Explain the term debugging a program.
3.14. List the important steps in writing and trouble shooting a simple

program.
3.15. Explain the principles of single step and break point debugging

techniques.
3.16. Write simple programs to setup time delay using counter & a single

register.
3.17. Calculate the time delay in the program given the clock frequency.

8051 Programming Concepts
 3	

3‐2 8051 Programming Concepts

Maanya’s M.G.B Publications Microcontrollers

3.1. List the various symbols used in drawing flow charts.
• Flowchart is a graphical or pictorial representation of an algorithm. It is used to

represent algorithm steps into graphical format.
• A flowchart is a set of symbols that indicate various operations in the program.
• For every process, there is a corresponding symbol in the flowchart. Once an

algorithm is written, its pictorial representation can be done using flowchart
symbols.

• The flowchart symbols as given below are as per connection followed by
International Standard Organization (ISO).

rff Name Symbol Description

1

Terminator
Symbol

 • This symbol looks like a flat oval or is egg shaped.
• It is the first symbol and last symbol of the program logic

of flowchart.

2

Input/Output
Symbol

• The input/output symbol looks like a parallelogram.
• These symbols are used to denote any function of an I/O

device in the program.

3 Process Symbol • The process symbol looks like a rectangle.
• This symbol is used primarily for calculations and

initialization of memory locations. All the arithmetic
operations, data movements, initialization operations.

4

Decision Symbol

 • The decision symbol looks like a diamond shape.
• It is used when we want to take any decision in the

program.

5

Connector
Symbol

 • This symbol is used to connect the various portion of a
flowchart.

• This is normally used when the flow chart is split between
two pages.

6 Flow Lines
Symbol

 • These lines show the flow of control through the program.

7 Predefined
Process

 • This symbol indicates a call to a module that is not
included with in the current program.

3‐38051 Programming Concepts

Maanya’s M.G.B Publications Microcontrollers

3.2. Draw flow charts for simple problems.
Program - 1: Draw a flow chart to load the 32H into R0, R1, R2 and
Accumulator.

Fig. 3.2.(a)

Program - 2: Draw a flow chart to divide the 87H by 23H, save the quotient in
register R5 and remainder in R4.

Fig.3.2(c)

Programme - 3: Draw a flow chart to add 65H and 87H, if carry is generated,
preserve the carry into register R0 and sum into the register R1.

3‐4 8051 Programming Concepts

Maanya’s M.G.B Publications Microcontrollers

Fig. 3.2(b)

3.3. Write programs in mnemonics to illustrate the application of
data copy instructions.
Program - 1: Write a program to load Accumulator, Register B, register R0 and with
99H.

Memory Address Opcode Hex Code Comment

0000 MOV A,#99H 74 Load the Accumulator with 99H

0001 99

0002 MOV B,A F5 Get the data 99H into register B

3‐58051 Programming Concepts

Maanya’s M.G.B Publications Microcontrollers

0003 MOV R0,A F8 Get the data 99H into register R0

0004 HERE: SJMP HERE 80 Stop the execution of the program

0005 FE

Program- 2: Write a program to transfer the data at the RAM locations 45H,
46H, 47H into the registers R3, R4 and R5 respectively.

Memory
Address

Opcode Hex
Code

Comment

0000 MOV R0,#45H 78 Load the Register R0 with 45H
0001 45
0002 MOV A,@R0 E2 Get the data at the RAM location 45H into

A
0003 MOV R3,A FB Transfer the Accumulator data into Register

R3
0004 INC R0 08 Increment the pointer; (R0)=(R0)+1=46H
0005 MOV A,@R0 E2 Get the data at the RAM location 46H into

A
0006 MOV R4,A FC Transfer the Accumulator data into Register

R4
0007 INC R0 08 Increment the pointer; (R0)=(R0)+1=47H

Memory
Address

Opcode Hex
Code

Comment

0008 MOV A,@R0 E2 Get the data at the RAM location 47H into
A

0009 MOV R5,A FD Transfer the Accumulator data into Register
R5

000A HERE: SJMP
HERE

80 Stop the execution of the program

 FE

Program - 3: Write a program to transfer the data at the External RAM
locations 4500H, 4501H, and 4502H into the registers R0, R1 and R2
respectively.

Memory
Address

Opcode Hex
Code

Comment

0000 MOV
DPTR,#4500H

90 Load the DPTR with 4500H

0001 00
0002 45

3‐6 8051 Programming Concepts

Maanya’s M.G.B Publications Microcontrollers

0003 MOVX A,@DPTR E0 Get the data at the RAM location 4500H
into A

0004 MOV R0,A F8 Transfer the Accumulator data into
Register R0

0005 INC DPTR A3 Increment the data pointer;
0006 MOVX A,@DPTR E0 Get the data at the RAM location 4501H

into A
0007 MOV R1,A F9 Transfer the Accumulator data into

Register R1
0008 INC DPTR A3 Increment the data pointer;
0009 MOVX A,@DPTR E0 Get the data at the RAM location 4502H

into A
000A MOV R2,A FA Transfer the Accumulator data into

Register R2
000B HERE: SJMP HERE 80 Stop the execution of the program
000C FE

Program 4: write a program to move an array (block) of data from one
location to another location of internal RAM.

Memory
Address

Opcode Hex
Code

Comment

0000 MOV R0,#50H 78 Initialize the Source memory location with 50H
0001 50
0002 MOV R1,#60H 79 Initialize the Destination memory location

with 60H
0003 60
0004 MOV R6,#0AH 7E Load the count value into the register R2
0005 L1:MOV A,@R0 E2 Transfer the source data into Accumulator
0006 MOV @R1,A F7 Transfer the source data to destination location
0007 INC R0 08 Increment the source location pointer;

(R0)=(R0)+1
0008 INC R1 09 Increment the destination location pointer;

(R1)=(R1)+1
0009 DJNZ R6,L1 DE Decrement and compare the content of R6 with

zero
000A **06
000B HERE: SJMP

HERE
80 Stop the execution of the program

000C FE

3‐78051 Programming Concepts

Maanya’s M.G.B Publications Microcontrollers

** Calculation of Offset address of DJNZ: Offset address of Next memory
location of DJNZ (0B) – Offset address of target address L1 (05) = 06.
Programme - 5: Write a program to move an array (block) of data from
external memory location to internal RAM locations.

Memory
Address

Opcode Hex
Code

Comment

0000 MOV R0,#70H 78 Initialize the Destination memory location
with 70H

0001 70
0002 MOV

DPTR,#3300H
90 Initialize the Data pointer with 3300H

0003 00
0004 33
0005 MOV R6,#0AH 7E Load the count value into the register R2
0006 0A Transfer the source data into Accumulator
0007 L1:MOVX

A,@DPTR
E0 Transfer the source data to destination

location
0008 MOV @R0,A F6 Increment the source location pointer;

(R0)=(R0)+1
0009 INC DPTR A3 Increment the destination location pointer;

(R1)=(R1)+1
000A INC R0 08 Decrement and compare the content of R6

with zero
000B DJNZ R6,L1 DE
000C **06
000D HERE:SJMP HERE 80 Stop the execution of the program
000E FE

** Calculation of Offset address of DJNZ: Offset address of Next memory
location of DJNZ (0D) – Offset address of target address L1 (07) =06

3.4. Illustrate the application of jump instruction in the program.
Program 1: Write a program to clear 16 RAM locations starting at RAM address 60H.

Label Instruction Comment
 CLR A A=0
 MOV R1,#60H Load pointer, R1=60H.
 MOV R7,#10H Load counter, R7=16 (10 in hex).
UP MOV @R1,A Clear RAM location R1 points to.
 INC R1 Increment R1 pointer.
 DJNZ R7,UP Loop until counter=zero.

3‐8 8051 Programming Concepts

Maanya’s M.G.B Publications Microcontrollers

Program 2: Write a Program to sum of given N numbers (series of numbers). The
length of the series is in memory location 2200H and the series itself begins from
memory location 2201H. Assume the sum to be 8-bit number so you can ignore
carries. Store the sum at memory location 2300H.

a) Flow chart

b) Program

Label Instructions Comments
 MOV DPTR,#2200H Initialize memory pointer.
 MOVX A,@DPTR Get the count.
 MOV R0,A Initialize the iteration counter.
 INC DPTR Initialize pointer to array of numbers.
 MOV R1,#00H Result = 0.
UP MOVX A,@DPTR Get the number.
 ADD A,R1 (A)← Result + (A).
 MOV R1,A Result ← (A).
 INC DPTR Increment the array pointer.
 DJNZ R0,UP Decrement iteration count if not zero repeat.
 MOV DPTR,#2300H Initialize memory pointer.
 MOV A,R1 Get the result.
 MOVX @ DPTR,A Store the result.

STOP SJMP STOP Stop execution.

3‐98051 Programming Concepts

Maanya’s M.G.B Publications Microcontrollers

Program 3: Write a Program to find biggest data value in given data array.

a) Flow chart

b) Program

Label Instructions Comments

 MOV DPTR,#
2000

Initialize pointer to memory where numbers are
stored.

 MOV R0,#0AH Initialize counter.

 MOV R3,#00H Maximum=0.

3‐10 8051 Programming Concepts

Maanya’s M.G.B Publications Microcontrollers

AGAIN MOVX A,@DPTR Get the number from memory.

 CJNE A, R3,NE Compare number with maximum number.

 AJMP SKIP If equal to SKIP.

NE JC SKIP If not equal check for carry. If carry go to SKIP.

 MOV R3,A Otherwise maximum=number

SKIP INC DPTR Increment memory pointer.

 DJNZ R0,AGAIN Decrement count, if count = 0 stop.
Otherwise go to AGAIN.

STOP SJMP STOP Stop execution.

Program 4: Write a Program to find the sum of first N natural numbers.

 a) Flow chart

3‐118051 Programming Concepts

Maanya’s M.G.B Publications Microcontrollers

b) Program

Label Instructions Comments

MOV A, #00H A is initialized with 00H.

MOV R0,#01H Register R0 is initialized with 01H.

 MOV R2,#00H Register R2 is initialized with 00H.

Top1 MOV A,R2 Bring the partial result to accumulator.

ADD A,R0 Add the generated number to accumulator.

MOV R2,A Transfer the result to R2 register.

INC R0 Do the generated natural number is 11.

CJNE R0,#0BH,Top1 If not go to the label Top1.

MOVDPTR,5000H Move the address 5000H into DPTR.

MOVX @DPTR,A Result is moved into memory location.

STOP SJMP STOP Stop execution.

Note: Above program adds the generated natural numbers as follows 10 + 9 + 8 + 7 + 6
+ 5 + 4 + 3 + 2 + 1 = 55

Additional Information
8051 timer as an event counter

When timer/counter is used as an event counter, the source of clock pulses is outside
the 8051. If 1TC/ = in the TMOD register, timer/counter is used as an event counter and
the source of clock pulses is outside the 8051. The pulses are fed from ()P3.4T0 and

()P3.5T1 .

 In the TMOD register, if 0TC/ = , the timer gets pulses from the crystal, when
1TC/ = the timer is used as counter and gets its pulsed from outside the 8051. Therefore,

when 1TC/ = the counter count up as pulses are fed from pin 14 and 15. These pins are
called T0 and T1 , notice that these two pins belong to part 3. In the case of timer 0,
when 1TC/ = , pin 3.4 provides the clock pulse and the counter counts up for each clock
pulse coming from that pin. Similarly for timer 1, when 1TC/ = each clock pulse coming
in from pin 3.5 makes the counter count up.

3‐12 8051 Programming Concepts

Maanya’s M.G.B Publications Microcontrollers

a) Counter 0 in Mode 1
 The simplified block diagram of Counter 0 in Mode 1 is shown in 3. The counter
counts up when the logic signal on pin T0 (P3.4) goes from high level to low level (1 to 0
transition).

Fig. Counter 0 in mode 1

 Timer/counter is used as an event counter by making 1TC/ = in the TMOD
register. TR0 is used to start and stop the counter.

Counter 0 starts counting up at the rate at which the transitions occur at pin T0
(P3.4) of 8051. The counting will start from the 16-bit initial value present in the TH0
and TL0 registers. When the counter value exceeds FFFFH, timer overflow flag TF0 is
set to 1.
b) Counter 1 in Mode 1
 The simplified block diagram of Counter 1 in Mode 1 is shown in fig. The counter
counts up when the logical signal on pin T1 (P3.4) goes from high level to low level.

 Timer/counter is used as an event counter by making 1TC/ = in the TMOD
register. TR1 is used to start and stop the counter.

Fig. Counter 1 in mode 1

 Counter 1 starts counting up at the rate at which the transitions occur at pin T1
(P3.4) of 8051. The counting will start from the 16-bit initial value present in the TH1
and TL1 registers. When the counter value exceeds FFFFH, timer overflow flag TF1 is
set to 1.

3‐138051 Programming Concepts

Maanya’s M.G.B Publications Microcontrollers

3.5. Write a program using counter techniques.
Program 6: Write a program to count the pulses of an input signal every second and
display the count value on ports 1 and 2.
Solution:
 The external input clock pulses can be fed to one of the timers say timer ‘0’. Hence
timer ‘0’ is acting as counter ()1TC/ = and the mode of timer ‘0’ can be mode 1
()01MM 01 = for a very large count (16-bit counter-counts from 0000 to a maximum
value of FFFFH). The external input is to be fed to pin P3.5. We need a 1 second timing
to be generated. This can be done by using Timer ‘1’ in mode 1 (refer example 8.5).
Maximum delay by timer 1 in mode 1

= ()
frequencyCrystal
12FFFH ×

MHz11.0592
1265535×

= seconds0.0711=

 This is repeated 14 times (register R0 is used as counter) to get 10.071114 ≈×
second delay.
Algorithm:

1. Initialize timer 1 as timer, mode 1 and timer 0 as counter, mode 1.
2. Set P3.5 as input pin (to feed external pulses to be counted).
3. Initialize the timer 0 registers as 0000 (to count from 0) & start timer 0.
4. Initialize counter (R0) with 14 (for 1 second delay).
5. Initialize timer 1 registers with initial count (here 0000H for maximum delay of

0.0711 seconds).
6. Start timer1.
7. Wait till timer 1 overflows ()1TF1= .

8. Stop timer 1 and clear TF1.
9. Decrement counter R0 and if not zero, repeat from step 5.
10. Display the count accumulated in TH0:TL0 on port 2 and 1.
11. Repeat from step 3 for continuous display every second.

 Hence TMOD = 15 H

3‐14 8051 Programming Concepts

Maanya’s M.G.B Publications Microcontrollers

Assembly Language Program:

 ORG 00H

 MOV TMOD, #15H ; Timer 1 - - timer, mode 1 and
; timer 0 - - counter, mode 1

 SETB P3.4 ; make port pin as input to accept external clock

rept: MOV TL0, #00 ; initialize counter (timer0) to count from zero

 MOV TH0, #00

 SETB TR0 ; start timer 0

 MOV R0, #14 ; to repeat timer 1 14 times for 1 second delay

again: MOV TL1, #00 ; Initialize timer 1

 MOV TH1, #00 ; start timer 1

wait: JNB TF1, wait ; wait till timer 1 overflows

 CLR TR1 ; stop timer 1

 CLR TF1 ; clear timer flag

 DJNZ R0, again ; repeat till R0 becomes zero

 CLR TR0 ; stop timer 0

 MOV A, TL0 The count in timer 0
; (since 1 second is over)

 MOV P1, A ; is displayed on port P1

 MOV A, TH0 ; upper part of count on port P2

 MOV P2, A

 SJMP rept ; repeat for next 1 second count

 END

 A schematic of the hardware set-up for the above example is shown in fig.

3‐158051 Programming Concepts

Maanya’s M.G.B Publications Microcontrollers

Program 7: Assuming that clock pulses are fed into pin T1, write a program for counter
1 in mode 2 to count the pulses and display the state of the TL1 count on P2.
Solution:

 MOV TMOD, #01100000B counter 1, mode 2, 1C/T =
external pulses

 MOV TH1, #0 clear TH1

 SETB P3.5 make T1 input

AGAIN: SETB TR1 start the counter

BACK: MOV A, TL1 get copy of count TL1

 MOV P2, A display it on port 2

 JNB TF1, Back keep doing it if TF=0

 CLR TR1 stop the counter 1

 CLR TF1 make the counter 1

 SJMP AGAIN keep doing it

 Notice in the above program the role of the instruction “SETB P3.5”. Since ports
are set up for output when the 8051 is powered up, we make P3.5 an input port by
making it high. In other words, we must configure (set high) the T1 pin (pin P3.5) to
allow pulses to be fed into it.

 P2 is connected to 8 LEDs and input T1 to pulse.
 In example 4.15 we are using timer 1 as an event counter where it counts up as
clock pulses are fed into pin P3.5. These clock pulses could represent the number of
people passing through an entrance, or the number of wheel rotations, or any other
event that can be converted to pulses.

3‐16 8051 Programming Concepts

Maanya’s M.G.B Publications Microcontrollers

3.6. Write programs of instructions to perform single byte,
double byte and multi byte addition and subtraction.
Single byte and Multi byte Addition
1. Addition of Two 8-bit (Two 1-byte) Numbers
Program 1: Write a program to add two 8-bit numbers 14H and 23H and store the
result in the location 8500H.

a) Flow chart
Start

Initialize data pointer

Bring data to register A

Add the data

Transfer the result into
external memory location

Stop

b) Program
Label Instructions Comments

 MOV DPTR,#8500H Initialize the data pointer.

MOV A,#14H Move 14H to A.

ADD A,#23H Add A and 23H.

MOVX @DPTR,A Result is moved into memory location.

STO SJMP STOP Stop execution.

3‐178051 Programming Concepts

Maanya’s M.G.B Publications Microcontrollers

Program 2: Write a program to ADD given two 8-bit numbers and store the result in
a specified external memory location.

Label Instructions Comments

 MOV DPTR,#8500H Initialize the data pointer.

 MOVX A,@DPTR Data1 is copied into accumulator.

 MOV R2,A Data1 is copied into R2 register.

INC DPTR Update the pointer.

MOVX A,@DPTR Data2 is copied into accumulator.

ADD A,R2 Data1 & Data2 are added

INC DPTR Update the pointer.

MOVX @DPTR,A Result is transferred into memory location.

STOP SJMP STOP Stop execution.

2. Addition of Three 8-bit (Three 2-byte) Numbers
Program 3: Write a program to find the sum of three data bytes and store the result in
a specified external memory location.

 Label Instructions Comments

 MOV DPTR,#8500H Initialize the data pointer

 MOV A,#29H Move 29H to A.

 ADD A,#35H Add A & 35H.

 ADDC A,#47H Add A, 47H and CY.

 MOVX @DPTR,A Result is moved into memory location.

STOP SJMP STOP Stop execution.

3. Addition of Two 16-bit (Two 2-byte) Numbers
Program 4: Write a program to ADD given two 16-bit numbers and store the result in
a specified external memory location.

Label Instructions Comments

 CLR C Clear the C flag to zero.

 MOV A,#DATA L1 Load DATA1 LSD to A.

 MOV A,#DATA L2

Add the content of A and DATA 2 LSD.

3‐18 8051 Programming Concepts

Maanya’s M.G.B Publications Microcontrollers

 MOV DPTR,#4500H Load DPTR = 4150H.

 MOVX @DPTR,A Move the content in A to external memory whose address is 4150H.

 INC DPTR Increment the DPTR.

 MOV A,#DATA M1 Load DATA1 MSD to A.

 ADDC A,#DATA M2 Add A, DATA 2 MSD and CY.

 MOVX @DPTR,A Move the sum in A to external memory address 4151H.

HERE SJMP HERE Stay in this loop.

4. Subtraction of Two 8-bit Numbers
Program 5: Write a program to subtract two 8-bit numbers 23H and 14H and store
the result in the location 8500H.

a) Flow chart
Start

Initialize data pointer

Bring data to register A

Subtract the data

Transfer the result into
external memory location

Stop
b) Program

Label Instructions Comments

 MOV DPTR, #8000H Initialize the data pointer.

 MOV A,#23H Move 23H to A.

 CLR C Clear carry flag.

 SUBB A,#14H Subtract 14H from A.

3‐198051 Programming Concepts

Maanya’s M.G.B Publications Microcontrollers

 MOVX @DPTR,A Result is moved into memory location.

STOP

SJMP STOP Stop execution of the program.

Program 6: Subtract an 8-bit number from another 8-bit number and store the
result in memory

Label Instructions Comments

 MOV DPTR, #8500H Initialize the data pointer.

 MOVX A,@DPTR Data 1 is loaded into accumulator.

 MOV R2,A Data 1 is copied into R2 register.

 INC DPTR Update the pointer.

 MOVX A,@DPTR Data 2 is loaded into accumulator.

 CLR C Clear the carry flag.

 SUBB A,R2 Subtract data1 from data2.

 JNC DOWN If no carry goto DOWN.

 CPL A 1’s Complement

 INC A 2’s Complement

DOWN INC DPTR Update the pointer

 MOVX @DPTR,A Result is transferred into memory

STOP SJMP STOP Stop execution.

5. Subtraction of two 16-bit numbers
Program 7: Subtract a 16-bit data from another 16-bit data and store the result in
memory.

Label Instructions Comments

 CLR C Clear the C (initial borrow as zero).

 MOV A,#DATA
L1

Load DATA1 LSD to A.

3‐20 8051 Programming Concepts

Maanya’s M.G.B Publications Microcontrollers

SUBB A,#DATA
L2

Subtract with borrow the content of A and Data L2.

 MOV DPTR,#4500 Load DPTR = 4500H.

MOVX @DPTR,A

Move the content in A to external memory whose
address is 4500H.

 INC DPTR Add one to DATA pointer.

 MOV A,# DATA
M1

Load DATA1 MSD to A.

SUBB A,#DATA
M2

Subtract with borrow the content of A DATA2 MSD.

MOVX @DPTR,A

Move the result in A into memory whose address is at
data pointer.

HLT SJMP HLT Stay in the loop.

3.7. Define a subroutine and explain its use.
During the execution of a program, certain operations have to be repeated at

different times within the program operating on different parameters. This would be a
waste of memory space. Instead of such repeated operations, a min program may be
written for the operation as a sub-program or routine in the memory and it may be
called into main program whenever necessary. Then such sub-program is known as
‘subroutine’.

Fig. Structure of Subroutine

3‐218051 Programming Concepts

Maanya’s M.G.B Publications Microcontrollers

Thus a subroutine is defined as a group of instructions written separately from
the main program to perform a function that occurs repeatedly from the main program
to perform a function that occurs repeatedly in the main program.

Note that the concept of subroutine is mainly used to avoid the repetition of
small programs. The structure of the subroutine is shown in Fig. in which they are
called at various points of the main program by CALL instruction where ever they
required. The subroutine ends with RETURN instruction.

The concept of subroutine is mainly used to avoid repetition of smaller
programs. Subroutine are written separately and stored in the memory. They are called
at various points of the program using CALL instruction.

3.8. Explain the sequence of program when subroutine is called
and executed.

LCALL is a 3-byte instruction, in which one byte is the opcode, and the other
two bytes are the 16-bit address of the target subroutine. LCALL calls a program
subroutine.
The following is the sequence of the LCALL instruction.
1. The content of PC is incremented by three
2. Stack pointer is incremented by one
3. The low order PC is pushed on to the stack.
4. Stack pointer is incremented by one
5. The high order PC is pushed on to the stack
6. The second byte of the instruction is loaded to PCH and the that byte of the

instruction is loaded to PCL
7. Now, the instruction at (PC) is executed.
8. The last instruction of the called subroutine must be RET. After executing the called

subroutine, the address from the stack is loaded into PC. The subroutine may
therefore begin anywhere in the full 64K byte program memory address space. No
flags are affected.

3.9. Explain information exchange between the program counter
and the stack and identification of stack pointer register when a
subroutine is called.
• A set of instructions written separately from the main program to perform a

function that occurs repeatedly in the main program is called subroutine or
subprogram or routine or procedure or function.

• The subroutine may be required by the main program or another subroutine as
many times as required.

3‐22 8051 Programming Concepts

Maanya’s M.G.B Publications Microcontrollers

• Subroutine can be called from the main program either conditionally or
unconditionally.

• Subroutine is called to main program by the CALL instructions. As an when the
subroutine is called, the execution of main program is stopped and the program
counter is loaded with starting memory address of the subroutine and the
subroutine is running up to the RET instruction encountered by the controller, the
controller return to the main program and starts to execute the remaining program.

Fig. 3.9

There are so many advantages to subroutine, they are
• The main program becomes simple.
• Execution speed increases.
• It takes less up space in the ROM.
• Debugging is very easy.
• Size of the main program is reduced.
• The disadvantage of the subroutine is that need of stack
• If a subroutine is made up of few instructions, it may be advisable not to create it,

since the call and return mechanism may make it slower execution instructions to
place directly in the main program.

The concept of subroutine can be understood from the following diagram.
• The main program starts at 2000 H; default value of the stack is 07H.
• The controller encounters the subroutine at 2004H in the main program.

3‐238051 Programming Concepts

Maanya’s M.G.B Publications Microcontrollers

• Immediately the program counter is loaded with the starting address of the
subroutine (6070H).

• The return address 2007H is loaded into the stack as the lower byte of the return
address is (07) at 08H location of the stack and higher byte (20) of the return
address is at 09H location of the stack.

• Now the subprogram at the location 6070H is starts to executed.
• Whenever the controller encounters the RET instruction in the subprogram, it will

return back to the return address 2007H of the main program , at the same time the
program counter content becomes 2007H. And controller starts to execute the
remaining program.

3.10. Explain PUSH & POP instructions.
PUSH and POP are stack related instruction. These instructions must be used in

direct addressing mode. No flag is affected. The data moves between areas of internal
RAM are called as stack. The starting address of the stack is stored in stack pointer
register (SP). By default the stack point register loaded with 07H. After execution of
each PUSH instruction, the contents of the register are saved on to the stack. After
transfer of data the stack pointer is incremented by 1. It is a two byte instruction and it
needs two machine cycles for execution. The format of PUSH instruction is ‘PUSH
direct’.

For example PUSH A is invalid if we are writing the same instruction as ‘PUSH
0E0H’ is valid, where 0E0H is address of the register A. Similarly considering 2nd
example, PUSH R5 is invalid instruction, if we are writing the same instruction as
‘PUSH 05 H ‘is valid instruction, where 05H is the address of the register R5.

Similarly the function of thePOP instructio n is that getting the contents back
from the stack into a given registers. For every POP instruction, the top data (content) of
stack is copied to the register specified by the instruction and the stack pointer is
decremented once.

• 08H to 1FH (24 locations) of the internal RAM is used for the stack.
• If a programme need more than 24 locations for stack , we have to change the SP to point

to RAM
• Locations 30-7FH. This is done with the instruction “MOV SP, # nn”.
• 20H to 2FH locations of RAM should not use for RAM.
• In a Program the number of Pushes and number of POPs must be equal in number

Example 1: With the following example we can understand the function of PUSH
INSTRICTION.

3‐24 8051 Programming Concepts

Maanya’s M.G.B Publications Microcontrollers

Fig 3.10(a)

Example 2:
With the following example we can understand the function of POP

INSTRUCTION.

Fig. 3.10(b)

3‐258051 Programming Concepts

Maanya’s M.G.B Publications Microcontrollers

3.11. Illustrate the concept of nesting, multiple ending and
common ending in subroutines.

Subroutines are three types, they are:
1. Multiple-calling of a subroutine.
2. Nesting of subroutines.
3. Multiple ending subroutines.

Fig. 3.11.(a)

3‐26 8051 Programming Concepts

Maanya’s M.G.B Publications Microcontrollers

1. Multiple-calling of a subroutine
 Subroutines are normally called by the main program, calling a subroutine more
than once by the main program is called “multiple calling of a subroutine.”

The concept of multiple calling can be understood from the fig. 3.11.(a).
2. Nesting of subroutines
• If a subroutine is called by another subroutine and so-on. Then such programming

is known as Nesting.
• The process of a subroutine calling a second subroutine and the second subroutine

in its turn calling a third one and so on is called nesting of subroutines.
• Theoretically speaking, the number of subroutines that can be called by this process

is infinite but, it will be limited by the size of memory.
• The nesting process limited by the available stack capacity.
• When one subroutine calls another subroutine, all the return addresses are stored

on the stack.
• The fig illustrates the Concept of Nesting.

Fig. 3.11.(b)

Additional Information
• The process of nesting can be under from the above diagram.
• The main program starts at 1000H; default value of the stack is 07H.
• The controllers encounter the subroutine at 100CH in the main program.
• The address of the next instruction i.e. 100FH is placed on the stack and program

control is transferred to the starting address of subroutine-1 i.e. 3100H.
• Subroutine-1 calls the subroutine-2 from the location 3102H, The address 3105H is

placed on the stack and the program control is transferred to the subroutine-2.

3‐278051 Programming Concepts

Maanya’s M.G.B Publications Microcontrollers

• The subroutine-2 encounters the subroutine-3 at the location 8101H. The address
8104H is placed on the stack and the program control is transferred to the starting
address (9300H) the subroutine-3. The sequence of execution return to the main
program.

Fig.

3. Multiple ending of a subroutine
• The CALL instruction has three possible endings. In which two endings are

conditional and one is unconditional.
• The two conditional returns are RZ (return zero) and RC (return carry) and the

unconditional return is RET.
• From the above diagram we can understand the concept of multiple ending of

subroutine.
• If the subroutine encounters the conditional return RC (return carry), the program

control transfer to the main program from 1003H.
• If the subroutine encounters the conditional return RZ (return zero), the program

control transfer to the main program from 1006H.
• If neither RC nor RZ encountered, the program control transferred to main program

from 1008H location of the subroutine.

3‐28 8051 Programming Concepts

Maanya’s M.G.B Publications Microcontrollers

Fig.

3.12. Use input/output, machine related statements in writing
assembly language programs.
3.12.1. Port 0 (P0)

Port 0 occupies a total of 8 pins named as P0.0 to P0.7 is used as:
• Input port for transferring data from peripherals to microcontroller.
 (or)
• Output port for transferring data from microcontroller to peripherals.
 (or)
• Lower order address bus (A0 to A7) for external memory.
 (or)
• Bidirectional data bus (D0 to D7) for external memory.

Example 1: A program to toggle all the bits of Port 0
BACK: MOV A, #55H ; A = 55H
 MOV P0, A ; Send 55H to Port 0
 ACALL DELAY ; Wait

3‐298051 Programming Concepts

Maanya’s M.G.B Publications Microcontrollers

 MOV A, #0AAH ; A = AAH
 MOV P0, A ; Send AAH to Port 0
 ACALL DELAY ; Wait
 SJMP BACK ; Keep doing it
 AAH (=101010102) is the complement of 55H (=010101012). Therefore by sending
55H and AAH continually to Port 0 we can toggle all the bits of that port.
3.12.2. Port 1 (P1)
• Port 1 occupies a total of 8 pins named as P1.0 to P1.7.
• It can be used as input/output.

Example 2: A program to get a byte from Port 0 and send it to Port 1.
 MOV A, #0FFH; A = FFH
 MOV P0, A ; Write ‘1’s to all the bits of port 0 and make
it as an input port
BACK: MOV A, P0 ; Get data from port 0
 MOV P1, A ; Send data to port 1
 SJMP BACK ; Keep doing it
 In the above program, the port 0 is configured as an input port by writing ‘1’s to
all the bits. Then the data is received from the port 0 and sent to port 1.

Example 3: A Program to toggle all the bits of Port 1 continuously.
 MOV A, #55H ; A = 55H
BACK: MOV P1, A ; Send 55H to Port 1
 ACALL DELAY ; Wait
 CPL A ; Complement A-register
 (i.e., A = AAH)
 SJMP BACK ; Keep doing it
 The above program will continuously send out to port 1, the alternating values
55H and AAH.

Example 4: A Program to get data from Port 1 and save it in registers R7 and
R6.

 MOV A, #0FFH ; A = FFH
 MOV P1, A ; Write 1’s to all the bits of port 1
 and make it as an input port
 MOV A, P1 ; Get data from port 1
 MOV R7, A ; Save it in register R7

3‐30 8051 Programming Concepts

Maanya’s M.G.B Publications Microcontrollers

 ACALL DELAY ; Wait
 MOV A, P1 ; Get another data from port 1
 MOV R6, A ; Save it in register R6
3.12.3. Port 2 (P2)
A total of 8 pins of Port2 named as P2.0 to P2.7 are used as:
• Input port

(or)
• Output port

(or)
• High-order address bus (A8 to A15) for external memory.

Example 5: A Program to toggle all the bits of port 2 continuously.
 MOV A, #55H ; A = 55H
BACK: MOV P2, A ; Send 55H to port 2
 ACALL DELAY ; Wait
 CPL A ; Complement A-register
 (i.e., A =AAH)
 SJMP BACK ; Keep doing it
 The above program will continuously send out to port 2, the alternating values of
55H and AAH.

Example 6: A Program to get a byte (Data) from port 2 and send it to port 1
continuously.

 MOV A, #0FFH ; A = FFH
 MOV P2, A ; Write 1’s to all the bits of port 2
and make it as an input Port
BACK: MOV A, P2 ; Get data from port 2
 MOV P1, A ; Send data to port 1
 SJMP BACK ; Keep doing it
3.12.3. Port 3

Port 0 occupies a total of 8 pins named as P0.0 to P0.7. These 8 numbers of pins are
used:
• as input port

(or)
• as output port

(or)

3‐318051 Programming Concepts

Maanya’s M.G.B Publications Microcontrollers

• Alternate uses are:
*Note: The ports P1, P2 and P3 do not require any pull-up resistors since they already
have pull-up resistors internally.

3.13. Explain the term debugging a program.
Debugging is the process of finding and eliminating errors in a program. In the

process of debugging, the program is tested thoroughly to find out the errors and to
remove them. During debugging process the errors in program logic, machine codes
and execution process are detected and eliminated.

The debugging process can be divided into two parts: static debugging and
dynamic debugging. Static debugging is similar to visual inspection of a circuit board. It
is done by paper and pencil check of a flowchart and machine code. Dynamic
debugging involves observing the output or register contents, following the execution
of each instruction or of a group of instructions.
3.13.1. Common Error occurred in Assembly Language Program

The assembly language program is translated in to machine codes before
entering the program to microprocessor/ microcontroller kit. The following common
errors are occurred in assembly language program.

1. Selecting a wrong code
2. Forgetting the second and third byte of an instruction
3. Specifying the wrong jump location
4. Not reversing the order of high and low bytes in a jump instruction
5. Writing memory addresses in decimal thus specifying wrong jump locations.

These common errors can be checked and corrected before entering the program
in the memory of microprocessor/microcontroller kit.

3.14. List the important steps in writing and trouble shooting a
simple program.
• An assembly language program is a sequence of instructions written in mnemonics

to perform a specific task. These instructions are selected from the instruction set of
the microprocessor being used.

• To write a program, we need to divide a given problem into small steps and
translate these steps into the operations the 8051 can perform.

• For example, the Z80 does not have an instruction that can multiply two' binary
numbers, but it can add. Therefore, the multiplication problem can be written as a
series of additions.

• After writing the instructions in mnemonics, you should translate them in to binary
machine code; this process of translation is called assembling the code Quite often,

3‐32 8051 Programming Concepts

Maanya’s M.G.B Publications Microcontrollers

this process involves intermediate steps, such as translating mnemonics into Hex
code and then into binary code.

• To execute a program, the binary code should be entered and stored in the R/W
memory of a microcomputer so that the microprocessor can read and execute the
binary instructions written in memory.

• In a single-board microcomputer the instructions are, generally, entered using a Hex
keyboard. This is one of the reasons why we translate mnemonics into Hex code as
an intermediate step rather than into binary code directly.

• When the Hex code is entered, the keyboard program, residing in the
microcomputer system, translates the Hex code into binary code.

3.15. Explain the principles of single step and break point
debugging techniques.

Dynamic debugging again can be divided into two common methods as single
step control technique and break point technique.
3.15.1. Single step control technique

The process which involves the observing of the output, or register contents,
following the execution of each instruction, is known as single step control technique of
dynamic debugging. The single step control allows the user to execute the program one
step at a time and check whether the intermediate results are correct or not. Hence this
method is very slow and not suitable for lengthy programs. This method cannot find
timing errors and errors in DMA or interrupt.
3.15.2. Break point technique

The process which involves the observing of output, or register contents,
following the execution of a group of instructions, is known as break point technique of
dynamic debugging. In the microcomputer, this location or point in the program by
using RST software instructions.

Additional information
Introduction to Time Delay and Initial Count Calculations

8051 timers can be used to generate the required time delay. Timers 0 or 1 are used to
count the clock pulses.

12
freqencyCrystal =frequency clock Timer … (1)

frequencyCrystal
12 = periodclock Timer … (2)

3‐338051 Programming Concepts

Maanya’s M.G.B Publications Microcontrollers

a) Time Delay
 The time delay introduced between starting and stopping of the timer is
calculated using the following formula:

[] periodClockimerT1 +count Initial - valueMaximum =delay Time ×

or

[] ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×

frequencyCrystal
121 +count Initial - valueMaximum =delay Time

b) Initial Count
The initial count value is computed as follows:

() ()frequencyclockTimerdelay Time -1+ valueMaximum =count Initial ×
or

() ⎟
⎠
⎞

⎜
⎝
⎛ ×

12
frequencyCrystaldelay Time -1+ valueMaximum =count Initial

c) Maximum Count Value
The maximum value depends on the mode of the timer as shown in table.

Mode Timer Size Maximum Count Value

Hexadecimal Decimal

Mode 0 13-bit 1FFFH 8191D

Mode 1 16-bit FFFFH 65535D

Mode 2 8-bit FFH 255D

• 8051 timers can be used to generate the required time delay.
• In order to generate certain time delay timer (0 or 1) register should be loaded with

an appropriate number. Then run the timer and it stars counts up and reaches to its
maximum value.

• While reaching the maximum value timer rolls over and stops the counting process.
The following procedure to be adopted while finding the number to be loaded into
the timer registers.

Procedure for Time Delay Generation:
Step 1: Initialize TMOD for the required Timer (0 or 1) and mode (0 or 1 or 2)
Step 2: Load the initial count value in registers TL and TH (of timer 0 or 1)
Step 3: Start the timer (SET TR1 or TR0 bit of TCON register)
Step 4: Wait until the timer flag (TF1 or TF0 of TCON) is set. (Remember TFX=1 when
timer X overflows the maximum value)

3‐34 8051 Programming Concepts

Maanya’s M.G.B Publications Microcontrollers

Step 5: Stop the timer (TR1 or TR0 is made zero)
Step 6: Clear TF falg
Step 7: Repeat from step 2 for the next delay.
 The initial count value is computed as shown below:

3.16. Write simple programs to setup time delay using counter &
a single register.
• For example, if the microcontroller clock frequency is 12 MHz.

• The time period of one T state () ondsec
1012

1
6×

= .

• The time period of one machine cycle Tstate12×= 1= microsecond.

1. Delay program with one loop

Mnemonics
Number of
machine cycles

Number of times
executed

Total number of
machine cycles

DELAY MOV R0, #FFH 1 1 1

LOOP DJNZ R0, LOOP 2 255D 510D

 RET 3 1 2D

Total 513D

• Total number of machine cycles needed to execute this delay subroutine = 513 D.
• Total time period produced by this delay subroutine s1513 μ×= s513μ= .
• This delay program can produce a maximum delay period of 513 μs.
2. Delay program with two loops

Mnemonics
Number of machine
cycles

Number of times
executed

Total number of
machine cycles

DELAY MOV R0,
#FFH

1 1 1

LOOP MOV R1,
#FFH

1 255 255

LOOP1 DJNZ R1,
LOOP1

2 255 x 255 130050

 DJNZ R0,
LOOP2

2 255 510

 RET 2 1 2

Total 130818D

3‐358051 Programming Concepts

Maanya’s M.G.B Publications Microcontrollers

• Total number of machine cycles needed to execute this delay subroutine = 130818 D.
• Total time period produced by this delay subroutine s1130818 μ× s130818μ= .
• The delay period of delay subroutine can be increased to increase the number of

loops. For changing the initial value loaded in the registers, we can able to change
the delay period of the time delay subroutines.

Program 1: Write a 8051 assembly language program to generate a delay of 5ms using
timer1 in mode 1 with XTAL frequency of 11.0592 MHz.
Solution: In mode 1, the timer counts up till FFFFH=65535D (maximum value for the
16-bit timer). Then it rolls over from FFFFH to 0000H and sets the flag bit TF=1.
Step 1: The timer mode register TMOD is programmed as

Fig.3.16

 Here ⇒=10HTMOD Timer 1 in mode 1
Step 2: The initial count value (in hexadecimal) to be loaded into TL1 and TH1 is
computed as,

() ()frequencyclockTimerdelay Time -1+ valueMaximum =count Initial ×

12
M059.11m5)165535(×

−+= 460865536−= H00EED928,60 ==

 The initial value (16-bit) should be loaded into the 16-bit timer register T1 as TH1
= 0EEH (MSB) and TL1 = 00H (LSB).
Assembly Program:
 MOV TMOD, #10H Timer 1, mode 1

AGAIN: MOV TL1, #00H Initial value in TL & TH

 MOV TH1, #0EEH

 SETB TR1 START Timer 1

WAIT: JNB TF1, WAIT wait until timer 1 counts upto maximum i.e., jump if TF1 = 0

 CLR TR1 stop timer 1

 CLR TF1 clear TF1 so that it can be set again

 SJMP AGAIN by the timer1 roll over

Problem: Find the initial count value to be loaded into TL1 and TH1 to generate 5ms
time delay

3‐36 8051 Programming Concepts

Maanya’s M.G.B Publications Microcontrollers

The following procedure to be adopted while finding the number to be loaded into
the timer registers.

1. Assume the XTAL frequency of the 8051 (f).

2. Calculate the clock period).
f
1t(=

3. Divide the desired time delay by clock period. Result subtracted from maximum
count i.e,: for 8-bit : 256 & 16-bit: 65 536.

4. Convert the result (obtained in step-3) into hexa decimal.
5. Load the hexa decimal number in timer register (TH & TL).

Solution:

Clock period(t) .secmicro085.1
MH0592.11

1

.Z
==

Number of clocks 4608
secmicro085.1

secmilli5
==

Number to be loaded in to timer - 0: 65536-4608=60,928D=EE00H.

3.17. Calculate the time delay in the program given the clock
frequency.
Program 2: Find the time delay generated by timer 1 for the following program.

 MOV TMOD, #10H
AGAIN: MOV TL1, #00H
 MOV TH1, #0EEH
 SETB TR1
WAIT: JNB TF1, WAIT
 CLR TR1
 CLR TF1
 SJMP AGAIN

Solution:
• The timer 1 counts from the initial value EE00H to the maximum value (FFFFH).

• TMOD = 10H, 0TC/ = , implies timer 1 is in timer mode and is counting the internal
clock pulses.

• Timer clock period =
frequencycrystal
12

 μs1.085
MHz11.0592

12
==

3‐378051 Programming Concepts

Maanya’s M.G.B Publications Microcontrollers

• Total time taken to roll over, that is set the TF1, is
[] periodclockimerT1 +count Initial - valueMaximum =delay Time ×

∴ Time delay = () μs1.0851200Hμs1.0851EE00FFFF ×=×+−

 μs4996.425μ1.085d4608 =×= = ms4.996

Note: + 1 is added in the above formula because of the extra clock pulse needed when
the timer rolls over from FFFF to 0 and raises the TF flag.
Program 3: Find the time delay obtained for the following program.
Solution:
 Instruction Machine Cycles
 MOV TMOD,

#10H
2

AGAIN: MOV TL1, #0EAH 2
 MOV TH1, #0FFH 2
 SETB TR1 1
WAIT: JNB TF1, WAIT 22 (depends on the initial value in the timer = max. value – init.

Value + 1)
 CLR TR1 1 (FFFF – FFEA + 1)
 CLR TF1 1
 SJMP AGAIN 2
 Total 33

frequencyCrtal
12cycles machineNo.of =delay Total ×

μs35.805μ1.08533
M11.0592

1233=delay Total =×=×

Note:

D22H16

1
HFFEAvalueIntially
HFFFFvalueMaximum

=
+

−→
→

OBJECTIVES

4.1 Describe the Interfacing of push button switches and LEDs

4.2 Write instructions to access data for the above

4.3 Describe the Seven segment display interface – static and dynamic

types

4.4 List reasons for the popularity of LCDs

4.5 Describe the functions of pins of LCD

4.6 List instruction command code for programming a LCD

4.7 Explain Interfacing LCD to 8051

4.8 Program LCD in assembly language

4.9 Explain the basic operations of keyboard

4.10 Explain key press and detection mechanisms

4.11 Describe key bouncing problem and de-bouncing solutions

4.12 Explain Interfacing of a 4x4 Matrix Key Board.

4.13 Write a program to access key code from matrix key board

Interfacing Simple I/O Devices

 4	

4‐2 Interfacing simple I/O devices

Maanya’s M.G.B Publications Microcontrollers

4.0. Introduction to push button switches
Switch is an electrical component that can break an electrical circuit, interrupting the
current or diverting it from one conductor to another. A switch can act as an input
device to the microcontroller unit (MCU). Switches come in many different shapes and
sizes. The main idea or function is to either enable or disable something by simply
turning it on/off. Thus it acts as an input device that users can use to control certain
parts of the system.

 There are different conventional methods available to interface the switch to the
microcontroller.

Fig. 4.0

From the above diagrams, fig.1 and fig.2 are good and fair, but fig.3 and fig.4 not
preferable because, the microcontroller draws more current if we are connecting the
switch to the microcontroller as per fig.3, and the microcontroller shorted when the
switch is closed as per fig.4.

4.1. Explain the Interfacing of push button switches and LEDs.
1. Interfacing of pushbutton switches to 8051
• The fig. 4.1 shows the interfacing of switches to microcontroller.

• Switch (pushbutton) can be operated in any of two states (ON or OFF).

• The switch is used as input to a microcontroller.

• In the fig. 4.1(a) the switch 1 is connected to the P0.0 of the microcontroller through
a pull-up resistor (10K). If the SW1 is open, the P0.0 will be driven to high and read
as logic 1. When the SW1 is closed, P0.0 is shorted to ground and P0.0 pulled to 0V
and P0.0 will read as logic 0.

• As per fig. 4.1(b), if SW2 is open, the P0.1 is pulled to ground and the P0.1 will be
read as logic 0. If SW2 is closed, the Vcc is connected to the P0.1 and the P0.1 will
be read as logic 1.

4‐3Interfacing Simple I/O devices

Maanya’s M.G.B Publications Microcontrollers

Fig. 4.1(a) Fig. 4.1(b)

2. Interfacing of LED to 8051
• The fig. 4.1shows interfacing of LED to 8051.

• LED can be connected directly to the microcontroller or through a buffer (current
driver).

• The anode (A) terminal of the LED connected to the Vcc through a suitable resistor
and cathode (K) terminal of the LED connected to the port pin.

• The LED glows when port bit is reset. The microcontroller lacks 20-30mA driving
capability; hence a buffer or current driver can be connected in series with the LED
to the port pin.

Fig. 4.1(a) Fig. 4.1(b)

4‐4 Interfacing simple I/O devices

Maanya’s M.G.B Publications Microcontrollers

Code for run a LED
• Program for turn ON/OFF an LED is given below.

 ORG 0000h
LED_RUN: CLR P1.1 : LED glows by clear the output port bit (P1.1)

LED_OFF: SETB P1.1 : LED turned off by set the output port bit(P1.1)

HLT: SJMP HLT

 END

3. Interfacing of push button switches and LEDs
Now, if in any application, it is required to light an LED when a pushbutton is

pressed, then a circuit shown in fig. may serve the purpose. The operation is very
simple. Under normal conditions, when the pushbutton is not pressed, the port pin is
internally pulled high through the weak internal pull-up. The LED will not light,
because its cathode is also high. However, when the push button is pressed, the port pin
is grounded; current will flow through the LED and the current limiting resistor that
will cause the LED to glow. Normally, a resistance of Ω− 330220 is suitable as a current
limiting resistor.

 Fig. 4.1(c)

4.2. Explain the interfacing of Seven segment display.
There are two types SSDs available.

1. Common cathodes i.e. the cathode of all LEDs are given as a common pin. In this
case the anode is connected to the port pins. For method requires port pins to
source large current. But 8051 cannot source current beyond 2mA.

2. Common anodes i.e. the anode of all the LEDs are given as a common pin. In this
case the cathode is connected to the port pins. Hence port pins have to sink
current of 20 mA.

4‐5Interfacing Simple I/O devices

Maanya’s M.G.B Publications Microcontrollers

Fig. 4.2(a)

Hence we use common anode, SSD, and connect it to 8051 as shown in fig. 4.2(a).
4.2.1. Interfacing Common anode SSD to 8051
• Here, common anode seven segment display is used to interface with 8051.
• Pins ‘a’ to ‘h’ of the display are connected to the port 1 of microcontroller and

common pin is connected to +Vcc.
• Each segment of the display is connected to the port 1 pins through a suitable

resistor (220E).
• To display the different digits from 0 to 9 on the seven segment display, we need

different logic combinations to the corresponding LED segments.

Fig. 4.2.1(a)

4‐6 Interfacing simple I/O devices

Maanya’s M.G.B Publications Microcontrollers

1. Hex code for the decimals from 0 to 9 for common Anode
The table illustrates the binary and hexadecimal data given to the pins of SSD, to

display different digits.

Decimal
Digit

h g f e d c b a Hex code

0 1 1 0 0 0 0 0 0 C0H

1 1 1 1 1 1 0 0 1 F9H

2 1 0 1 0 0 1 0 0 A4H

3 1 0 1 1 0 0 0 0 B0H

4 1 0 0 1 1 0 0 1 99H

5 1 0 0 1 0 0 1 0 92H

6 1 0 0 0 0 0 1 0 82H

7 1 1 1 1 1 0 0 0 F8H

8 1 0 0 0 0 0 0 0 80h

9 1 0 0 1 0 0 0 0 90H

2. Program to display digit ‘9’
 ORG 0000H
 CLR P1.0 : Turn on the segment ‘a’
 CLR P1.1 : Turn on the segment ‘b’
 CLR P1.2 : Turn on the segment ‘c’
 CLR P1.3 : Turn on the segment ‘d’
 SETB P1.4 : Turn off the segment ‘e’
 CLR P1.5 : Turn on the segment ‘f’
 CLR P1.6 : Turn on the segment ’g’
HLT: SJMP HLT : Temporary stop the program
 END

OR
Single Step Program to display the digit ‘9’:

 ORG 0000H

 MOV P1,#90H

HLT: SJMP HLT

 END

4‐7Interfacing Simple I/O devices

Maanya’s M.G.B Publications Microcontrollers

4.3. Mention the reasons for the popularity of LCDs
LCD is a flat display and it is an electronic visual display. LCD uses the light

modulating properties of liquid crystals. These crystals do not emit light directly.CRT
screen, LEDs and seven segment displays are replaced by the LCDs because of
• Low cost prices of LCDs.
• LCDs are small in size compare with CRT displays.
• LCDs can display numerical, characters, symbols and other graphics.
• Refreshing is so easy.
• Easy to program for characters and graphics.
• Easy to interface with CPU.
• It consumes less electric power therefore they can operate with batteries.
• LCD screen is more energy efficient than all other display screens i.e. CRT screens.
• LCDs are available in a wider range of screen sizes.
• LCDs have wide range of applications such as computer monitors, televisions,

instruments panels and in other consumer products such DVD players, clocks etc.

4.4. Explain the functions of pins of LCD
• The pin configuration of 16 by 2 LCD is shown in fig. 4.4(c).

Fig. 4.4(c).

• The functions of the pins of LCD are listed in the table.

Pin Symbol I/O Description

1. SSV - Ground

2. CCV - +5V power supply

3. EEV - Used for controlling LCD contrast

4. RS I Register select input is used to select either of the two

4‐8 Interfacing simple I/O devices

Maanya’s M.G.B Publications Microcontrollers

available registers in the module: Data register or command
register.

When RS=0 Data register is selected when RS=1 command
register is selected.

5. WR / I Allows the user to write information in the LCD or read
information from it. For reading 1W/R = and for writing

.0/ =WR

6. E I This pin is used by LCD to latch information available at its
data pins.

7-
14

70 DBDB − I/O This 8-bit data bus is used to send information to the LCD
or read the contents of the internal registers of the LCD.

Additional Information
Functions of pins of LCD

RS: Registers select
• There are two registers of LCD viz. instruction command code register and data

register. The RS pin is used to select one of these registers.

• If RS=0 the instruction command code register is selected and if RS=1 the data
register is selected, allowing user to send data to be displayed on the LCD.

W/R : Read/Write
• W/R Pin is used to read or write to LCD.

• If W/R =0 the user can write information to the LCD and if W/R =1 the user can
read information.

Enable: E (it can also be denoted by EN)
• The enable pin E, is used to latch the data into the data or command register.

When data is supplied, a high-to-low (negative edge) is required for LCD latch
the data.

D0 –D7 or DBO – DB7
• The data pin D0 – D7 are used to send information to the LCD or read the contents

of LCD internal registers.

• To display letters and numbers we send ASCII codes for letters A –Z, a –z and
numbers 0-9 while making RS=1.

4‐9Interfacing Simple I/O devices

Maanya’s M.G.B Publications Microcontrollers

• The ASCII code that is to be displayed is of 8bits. It is send to the LCD in either
nibbles or bytes i.e. 4 or 8 bits at a time.

• The two primary modes of operation to send parallel data are 4 or 8 bits.

• If four bit mode is used two nibbles of data are sent to do an 8 bit transfer. The “E”
clock is used to initiate the data transfer. Atleast 6 I/O pins must be available for
4 bit mode.

• In 8 bit mode atleast 10 I/O pins must be used. This mode is used when
application needs speed.

EEssCC VandV,V

−CCV Provides +5V supply

−SSV Ground

EEV is used for controlling LCD contrast.

4.5. List instruction command code for programming a LCD
16x2 LCD module has a group of designed command instructions. Each

command code has particular task. Commonly used commands are listed below.

Hexa code Instruction/Description

01 Clear display screen

02 Return cursor to home

04 Decrement cursor (Shift cursor to left)

06 Increment cursor (Shift cursor to right)

05 Shift display right

07 Shift display left

08 Display OFF, cursor OFF

0A Display OFF, cursor ON

0C Display ON, cursor OFF

0E Display ON, cursor ON

0F Display ON, cursor Blinking

10 Shift cursor position to left

14 Shift cursor position to right

4‐10 Interfacing simple I/O devices

Maanya’s M.G.B Publications Microcontrollers

18 Shift the entire display to the left

1C Shift the entire display to the right

80 Force cursor to the beginning of first line

C0 Force cursor to the beginning of the second line

38 2 line and 5 X 7 matrix

4.6. Explain Interfacing LCD to 8051
LCD displays are dot matrix displays where displays elements in the form of

dots are arranged as row and columns. Common matrix sizes are 97or75 ×× . By
switching on some and off some dots, any character can be formed. Inside the LCD
there is a ROM which stores the required dot matrix code (for on/off of the dots) for the
corresponding ASCII input. Using the dot matrices text, pictogram and graphic displays
can be displayed.
4.6.1 Interfacing 16 x 2 LCD to 8051

Fig. 4.6.1(a) shows the interfacing of a 16 x 2 line LCD module with the
microcontroller 8051.

Fig. 4.6.1(a)

• Pins P1.0 to P1.7 of the microcontroller is connected to the D0 to D7 pins of LCD
module, through these pins the data transfer to the LCD module.

• Pins P2.0, P2.1, and P2.2 are connected to the RS, R/ W and E respectively, through
these pins control signals are transferred to the LCD module.

4‐11Interfacing Simple I/O devices

Maanya’s M.G.B Publications Microcontrollers

• A potentiometer is connected between 1, 2 and 3rd pins of the LCD. It is used to
adjust the contrast of the LCD module.

To display data on the LCD the following steps are executed:
i. Initialized the LCD with a set of command words. The command words are sent

on the D0-D7 data lines with RS=0, R/W=0 and a high-to-low pulse on the E pin.
ii. The ASCII value of the character to be displayed is sent on the D0-D7 data lines

with RS=1, R/W=0 and a high-to-low pulse on the E pin.
Table. lists some commonly used commands in LCD. In the LCD, the data can be

displayed at any location. The command words 80H sent to the LCD, positions the
cursor at position 0 on line 1. Similarly 86H, command word positions the cursor at
position 6 on line 1. The data byte sent to the LCD after the command word C0H is sent,
is displayed at position 0, line2.

LCD command Function
01H Clear LCD display
06H Shift cursor right after every data write to display
0EH LCD on, cursor ON
0CH LCD on,cursor OFF
0FH LCD on, blinking cursor
80H Cursor in position’0’ line 1
C0H Cursor in position’0’ line 2
38H 2 line 75× matrix display

4.7. Explain assembly language Program for interfacing LCD.
Write an 8051 assembly language program (ALP) to display HELLO on the LCD

connected to the 8051
Solution: Consider that the LCD is interfaced to the 8051 as shown in Fig. 4.7.

Fig. 4.7

4‐12 Interfacing simple I/O devices

Maanya’s M.G.B Publications Microcontrollers

Algorithm:
1. Initialize the LCD using the init LCD subroutine
2. Send the ASCII value of ‘H’ to port P1 and call datawrt subroutine
3. Repeat step 2 for ‘E’, ‘L’, ‘L’ and ‘O’
4. Wait here.

Init LCD subroutine:
1. Send command 38H to port P1 and call cmdwrt subroutine
2. Repeat step 1 for commands 0EH, 01, 06 and 80H (refer Table 10.3 for details)

Cmdurt subroutine (to latch data on P1 into command register):

1. Make RS (i.e., P2.0) and R/W (i.e., P2.1) pins low (for command & write)
2. Make enable pin E (P2.2) high, for a lms delay.
3. Make enable pin low
4. Call delay of 250ms
5. Return to calling program

Datawrt subroutine (to latch ASCII data on P1 into data register (RAM on
LCD) for display on LCD)

1. Make RS=1 (data register) and R/W=0 (write function)
2. Make E=1 for 1ms approximately
3. Make E=0
4. Call 250ms delay
5. Return to calling program.

ALP for LCD interfacing:

START:

ORG 0H
SJMP START
ORG 30H
ACALL INITLCD
MOV A, #’H’
ACALL DATAWRT
MOV A, #’E’
ACALL DATAWRT
MOV A, #’L’
ACALL DATAWRT
MOV A, #’L’
ACALL DATAWRT
MOV A, #’O’

;Reset vector

;start main program here
;initialize LCD
;ASCII value of H
; display on LCD

4‐13Interfacing Simple I/O devices

Maanya’s M.G.B Publications Microcontrollers

HERE:

ACALL DATAWRT
SJMP HERE

;WAIT HERE

DATAWRT Subroutine:
DATAWRT: MOV P1, A

SETB P2.0
CLR P2.1
SETB P2.2
ACALL DELAY1
CLR P2.2
ACALL DELAY
RET

; send the data on P1
; RS=1 for data
; R/W=0 for write
; E=1 enable high
; small delay
; E=0 enable low
; high delay

CMDWRT Subroutine:
CMDWRT: MOV P1, A

CLR P2.0
CLR P2.1
SETB P2.2
ACALL DELAY1
CLR P2.2
ACALL DELAY
RET

; send command on P1
; RS=0 for data
; R/W=0 for write to LCD
; E=1
; small delay
; E=0
; high delay

INITLCD Subroutine:
INITLCD: MOV A, #38H

ACALL CMDWRT
MOV A, #0EH
ACALL CMDWRT
MOV A, #01
ACALL CMDWRT
MOV A, #06;
ACALL CMDWRT
MOV A, #80H
ACALL CMDWRT
RET

;2 lines, 5 x 7

; display & cursor ON

; clear LCD

; shift cursor right

; line 1 display

4‐14 Interfacing simple I/O devices

Maanya’s M.G.B Publications Microcontrollers

Delay:
DELAY:
LOOP1:
LOOP2:

MOV R3, #250
MOV R4, #255
DJNZ R4, LPPP2
DJNZ R3, LOOP1
RET

; high delay

Delay 1:
DELAY1:
LOOP3:
LOOP4:

MOV R3, #10
MOV R4, #255
DJNZ R4, LOOP4
DJNZ R3, LOOP3
RET
END

; small delay

NOTE: DATAWRT and CMDWRT subroutines are almost same except for RS, which is
low (RS=0) for command & high (RS=1) for data.

4.8. Explain the basic operations of keyboard
A common method of entering programs into a microcomputer is through a

keyboard which consists of a set of switches. Basically each switch will have two
normally open metal contacts. These two contacts can by shorted by a metal plate
supported by a spring as shown in Fig.4.8 (a) On pressing the key, the metal plate will
short the contacts and on releasing the key, again the contacts will be open. The
processor has to perform the following three major task to get a meaningful data from a
keyboard.

Fig. 4.8(a)

• The input keyboard is composed of a set of labeled push button switches. Each
switch makes electrical contact when pressed.

4‐15Interfacing Simple I/O devices

Maanya’s M.G.B Publications Microcontrollers

Fig.4.8 (b)

• Fig. (b) shows the general operation of a keyboard.
• The aim of this mechanism is to generate and transmit a code each time key is

pressed.
Note: The mechanism should send one and only proper code, when the key is
pressed.

• The input keyboard is composed of a set of a labeled pushbutton switches. Each
switch makes electrical contact when pressed.

4.9. Explain key press and detection mechanisms
The steps required to identify the pressed key are,

1. To identify if any key is pressed or not.
• All the column lines are made zero by sending low on all the output lines.

i.e. all the keys in the keyboard matrix are activated.
• Read the status of rows i.e. return lines. If the status of all lines logic high, the

key is not pressed. Otherwise if the status of all lines is logic now, the key is
pressed.

2. Debouncing the key. (Using software debouncing as explained earlier)
3. Identifying the pressed key.

• Activate the keys from one column by making one column line zero.
• Read the status of returns lines. The zero or any return line indicates that key

is pressed.
• Activate the keys from next column and repeat steps (b) and (c) for all the

columns.
Key bouncing problem and de-bouncing solutions
1. Key bouncing

For interfacing keyboard to the microprocessors/ microcontroller based systems,
usually push button keys are used. These push button keys when pressed, bounces a
few times (10 - 20 ms), closing and opening the contacts before providing a steady
reading.

4‐16 Interfacing simple I/O devices

Maanya’s M.G.B Publications Microcontrollers

Normally a key is interfaced to a microcontrollor through a port line as shown in
fig. 4.9(a). the port line is pulled up to HIGH level when the key is not pressed and
contact is open. When the key is pressed, the port line is connected to Low level through
the key. However, because of the key-bounce problem, the port line eventually attains
ground level, after making several transitions between ground and ccV levels as shown
in fig.4.9 (b) Similar situation arises when the key is released.

 Fig.4.9 (a)
Do You Know?

1. The problem of a key bounce arrises when a pushbotton key is pressed or released.
2. Reading taken during bouncing period may be faulty. Thefore,

microprocess/microcontroller must wait until the key reach to a steady state; this
is known as key debounce.

2. De-bouncing methods
In case of a push button key, the metal contact bounces few times; hence the

voltage across the switch fluctuates and generates spikes in the signal. Therefore, it is
necessary to debounce the mechanical switches. The key debouncing is done through
hardware and software.

Fig. 4.9(c)

a) Hardware key Debouncing
• It is implemented by using flip-flop or latch. Fig.4.9 (c) shows a circuit diagram of

hardware key debouncing.

4‐17Interfacing Simple I/O devices

Maanya’s M.G.B Publications Microcontrollers

Fig.4.9 (d)

• When the switch is connected to A, the output of the latch goes high. When the key
makes contact with B, the output changes from logic 1 to logic 0. The wiper bounces
many times on contact B, but the output does not fluctuate between logic 1 and
logic 0. When the wiper is not connected either to A or B, the output of the latch
remains constant.

b) Software key Debouncing

4‐18 Interfacing simple I/O devices

Maanya’s M.G.B Publications Microcontrollers

• In the software technique the microcontroller waits for 20 ms before it accepts the
key as an input. If after 20ms the key is pressed the key is accepted by
microcontroller. The process of software key debouncing is as shown in fig.4.9 (d).

4.10. Explain Interfacing a 4 X 4 Matrix Key Board.
A common method of entering programs into a microcomputer is through a

keyboard. The microprocessor/ microcontroller has to perform the following three
major tasks to get a meaningful data from a keyboard.

1. Sense a key actuation
2. Debounce the key
3. Decode the key

Fig. 4.10(a)

The three major tasks mentioned above can be performed by software. Matrix
keyboards are scanned by bringing each X row low (or high) in sequence and detecting
a Y column low (or high) to identity each key in the matrix X-Y scanning can be done by
using dedicated keyboard circuitry or by using microcontroller ports under program
control.

4‐19Interfacing Simple I/O devices

Maanya’s M.G.B Publications Microcontrollers

Fig. 4.10(b)

Consider a simple matrix keyboard in which the keys are arranged in rows and
columns are shown in the fig. 4.10(a).

The rows are connected to port 1 lines of 8051 and the columns are connected to
port 3 lines of 8051 also. The rows and columns are normally tied ‘high’. At the

4‐20 Interfacing simple I/O devices

Maanya’s M.G.B Publications Microcontrollers

intersection of a row and column. A key is placed such that pressing a key will short
circuit the row and the column.

A key actuation is sensed by sending a ‘low’ to each row once at a time via port 1.
The columns are then read via port 3 to see whether any of the normally high columns
is pulled low by a key actuation. For finding the key actuation, the rows can be checked
individually to determine the row in which key is down. The row and column code in
which the key is pressed can thus be found.

The next step is to debounce the key. Normally the key bounces, When it is
pressed or released. When this bounce occurs, it may appear to the microcontroller that
the same key has been actuated several times instead of just one. The problem can be
eliminated by reading the keyboard after 20 ms and then verifying to see if it is still
down. If it is, then the key actuation is valid. This process is called key debouncing.

The next step is to translate the row and column code into its equivalent
hexadecimal code or ASCII code. This can be easily accomplished by a program. The
flow chart for the software required for the keyboard interfacing with microcontroller is
shown in the fig. 4.10(b).

In keyboard interfacing there are two methods of handling multiple key press.
They are two key lock out and N key rollover. The two key lock out takes into account
only one key pressed. An additional key pressed and released does not generate any
codes. The N key rollover will detect all the keys pressed in the order of entry and
generates corresponding key code.

The key board interfacing using microcontroller through ports is that most of the
controller time is utilized (or wasted) in keyboard scanning and debouncing.

4.10. A program to access key code matrix key board
Assembly language program for detection and identification of key activation
; keyboard subroutine. This program sends the ASCII code
; for pressed key to P0.1
; P1.0-P1.3 connected to rows P2.0-P2.3 connected to columns

 MOV P2,#0FFH ; make P2 an input port.
K1: MOV P1,#0 ; ground all rows at once.
 MOV A, P2 ; read all col. (ensure all keys

open).
 ANL A, 00001111B ; masked unused bits.
 CINE A,#00001111B,K1 ; check till all keys released
K2: ACALL DELAY ; call 20 msec delay
 MOV A, P2 ; see if any key is pressed

4‐21Interfacing Simple I/O devices

Maanya’s M.G.B Publications Microcontrollers

 ANL A, #00001111B ;mask unused bits
 CJNE A, # 0000111B, OVER ; key pressed, await closure
 SJMP K2 ; check till key pressed
OVER: ACALL, DELAY ; wait 20 msec debounce time
 MOV A, P2 ; Check key closure
 ANL A, #00001111B ;mask unused bits
 CJNE A, #00001111B, OVER1 ;key pressed find row
 SJMP K2 ;if none, keep polling
OVER1 MOV P1, #11111110B ;ground row 0
 MOV A, P2 ; read all columns
 ANL A,#00001111B ;mask unused bits
 CJNE A1,#00001111B, ROW_0 ;key row 0, find the col.
 MOV P1,#11111101B ; ground row1
 MOV A, P2 ; read all columns
 ANL A, #00001111B ;mask unused bits
 CJNE A, #00001111B, ROW_1 ;keyrow 1, find the col.
 MOV P1,#11111011B ; ground row2
 MOV A, P2 ;read all columns.
 ANL A, # 00001111B ;make unused bits.
 CJNE A, #00001111B, ROW_2 ; keyrow 2, find the col.
 MOV P1, #1111011B ; ground row 3
 MOV A, P2 ;read all cloumns.
 ANL A, #00001111B ;mask unused bits
 CJNE A,#00001111B, ROW_3 ;keyrow 3, find the col.
 LJMP K2 ;if none, false input, repeat
ROW_0: MOV DPTR,# KCODE0 ; set DPTR=start of row 0
 SJMP FIND ; find col. Key belongs to
ROW_1: MOV DPTR, # KCODE1 ; set DPTR= start of row 1
 SJMP FIND ;find col. Key belongs to
ROW_2: MOV DPTR, # KCODE2 ; set DPRT= Start of row 2
 SJMP FIND ; find col. Key belongs to

4‐22 Interfacing simple I/O devices

Maanya’s M.G.B Publications Microcontrollers

ROW_3: MOV DPTR, # KCODE 3 ; set DPTR=start of row 3
FIND: RRC A : see if any CY bit low
 JNC MATCH ; if zero, get the ASCII code.
 INC DPTR ; point to next col. address.
 SJMP FIND ; keep searching.
MATCH: CLR A ; set A=0 (match is found).
 MOVC A,@A+DPTR ; get ASCII code from table.
 MOV P0, A Display pressed key.
 LJMP K1

; ASCII LOOK-UP TABLE FOR EACH
ROW

 ORG 300H
KCODE0: DB ‘0’, ‘1’, ‘2’, ‘3’ ; ROW 0
KCODE1: DB ‘4’, ‘5’, ‘6’, ‘7’ ; ROW 1

KCODE2: DB ‘8’, ‘9’, ‘A’, ‘B’ ; ROW 2
KCODE3: DB ‘C’, ‘D’, ‘E’, ‘F’ ; ROW 3
 END

OBJECTIVES

5.1 Explain how to program 8051 timers to create time delays.
5.2 Write programs to generate a square wave of given frequency and duty cycle
using
timer.
5.3 Explain how to use an 8051 timer as an event counter.
5.4 Write a program to count the number of events using timer.
5.5 Explain how to program 8051 serial port to transmit and receive serial data.
5.6 Write a program to transmit a message serially using serial port.
5.7 Write a program to receive a message serially and store it in memory.
5.8 Explain RS232 standards
5.9 List RS232 pins of DB 25 and DB 9 connectors
5.10 Explain MAX 232 and 233 and interfacing
5.11 Explain the need of relays and opto-couplers for interfacing
5.12 Interface 8051 with relay to drive a lamp
5.13 Interface a solid state relay to drive a mains operated motor
5.14 Explain the working of a stepper motor.
5.15 Draw and explain a driver circuit required to run a stepper motor
5.16 Interface a stepper motor
5.17 Write a program to run stepper motor continuously

5.18 Explain pulse width modulation for controlling the speed of small DC motor.

Programming 8051
Timers, Serial port & Simple Applications

 5	

5‐2 Programming 8051 Timers & Serial port

Maanya’s M.G.B Publications Microcontrollers

5.0. Introduction
8051 timers can be used to generate the required time delay. Timers 0 or 1 are used to
count the clock pulses.

12
freqencyCrystal =frequency clock Timer … (1)

frequencyCrystal
12 = periodclock Timer … (2)

a) Time Delay
 The time delay introduced between starting and stopping of the timer is
calculated using the following formula:

[] periodClockimerT1 +count Initial - valueMaximum =delay Time ×

or

[] ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×

frequencyCrystal
121 +count Initial - valueMaximum =delay Time

b) Initial Count
The initial count value is computed as follows:

() ()frequencyclockTimerdelay Time -1+ valueMaximum =count Initial ×

or

() ⎟
⎠
⎞

⎜
⎝
⎛ ×

12
frequencyCrystaldelay Time -1+ valueMaximum =count Initial

c) Maximum Count Value
The maximum value depends on the mode of the timer as shown in table.

Mode Timer
Size

Maximum Count Value
Hexadecimal Decimal

Mode 0 13-bit 1FFFH 8191D
Mode 1 16-bit FFFFH 65535D
Mode 2 8-bit FFH 255D

5.1 Explain how to program 8051 timers to create time delays.
• The 8051 has two built in timers i.e., timer-0 and timer-1. These are controlled by

two SFRS TMOD and TCON.
• 8051 timers can be used to generate the required time delay.

5‐3Programming 8051 Timers & Serial port

Maanya’s M.G.B Publications Microcontrollers

• In order to generate certain time delay timer (0 or 1) register should be loaded with
an appropriate number. Then run the timer and it stars counts up and reaches to its
maximum value.

• While reaching the maximum value timer rolls over and stops the counting process.
The following procedure to be adopted while finding the number to be loaded into
the timer registers.

Procedure for Time Delay Generation:
Step 1: Initialize TMOD for the required Timer (0 or 1) and mode (0 or 1 or 2)
Step 2: Load the initial count value in registers TL and TH (of timer 0 or 1)
Step 3: Start the timer (SET TR1 or TR0 bit of TCON register)
Step 4: Wait until the timer flag (TF1 or TF0 of TCON) is set. (Remember TFX=1 when
timer X overflows the maximum value)
Step 5: Stop the timer (TR1 or TR0 is made zero)
Step 6: Clear TF falg
Step 7: Repeat from step 2 for the next delay.
 The initial count value is computed as shown below:
Program 1: Write a 8051 assembly language program to generate a delay of 5ms using
timer1 in mode 1 with XTAL frequency of 11.0592 MHz.
Solution: In mode 1, the timer counts up till FFFFH=65535D (maximum value for the
16-bit timer). Then it rolls over from FFFFH to 0000H and sets the flag bit TF=1.
Step 1: The timer mode register TMOD is programmed as

Here ⇒=10HTMOD Timer 1 in mode 1
Step 2: The initial count value (in hexadecimal) to be loaded into TL1 and TH1 is
computed as,

() ()frequencyclockTimerdelay Time -1+ valueMaximum =count Initial ×

12
M059.11m5)165535(×

−+= 460865536−= H00EED928,60 ==

 The initial value (16-bit) should be loaded into the 16-bit timer register T1 as TH1
= 0EEH (MSB) and TL1 = 00H (LSB).

5‐4 Programming 8051 Timers & Serial port

Maanya’s M.G.B Publications Microcontrollers

Assembly Program:
 MOV TMOD, #10H Timer 1, mode 1

AGAIN: MOV TL1, #00H Initial value in TL & TH

 MOV TH1, #0EEH

 SETB TR1 START Timer 1

WAIT: JNB TF1, WAIT wait until timer 1 counts upto
maximum i.e., jump if TF1 = 0

 CLR TR1 stop timer 1

 CLR TF1 clear TF1 so that it can be set again

 SJMP AGAIN by the timer1 roll over

Additional Information
Problem: Find the initial count value to be loaded into TL1 and TH1 to generate 5ms
time delay

The following procedure to be adopted while finding the number to be loaded into
the timer registers.

1. Assume the XTAL frequency of the 8051 (f).

2. Calculate the clock period).
f
1t(=

3. Divide the desired time delay by clock period. Result subtracted from maximum
count i.e,: for 8-bit : 256 & 16-bit: 65 536.

4. Convert the result (obtained in step-3) into hexa decimal.
5. Load the hexa decimal number in timer register (TH & TL).

Solution:

Clock period(t) .secmicro085.1
MH0592.11

1

.Z
==

Number of clocks 4608
secmicro085.1

secmilli5
==

Number to be loaded in to timer - 0: 65536-4608=60,928D=EE00H.
Program 2: Find the time delay generated by timer 1 for the following program.

 MOV TMOD, #10H

AGAIN: MOV TL1, #00H

 MOV TH1, #0EEH

5‐5Programming 8051 Timers & Serial port

Maanya’s M.G.B Publications Microcontrollers

 SETB TR1

WAIT: JNB TF1, WAIT

 CLR TR1

 CLR TF1

 SJMP AGAIN

Solution:
• The timer 1 counts from the initial value EE00H to the maximum value (FFFFH).

• TMOD = 10H, 0TC/ = , implies timer 1 is in timer mode and is counting the internal
clock pulses.

• Timer clock period =
frequencycrystal
12

 μs1.085
MHz11.0592

12
==

• Total time taken to roll over, that is set the TF1, is
[] periodclockimerT1 +count Initial - valueMaximum =delay Time ×

∴ Time delay = () μs1.0851200Hμs1.0851EE00FFFF ×=×+−

 μs4996.425μ1.085d4608 =×= = ms4.996

Note: + 1 is added in the above formula because of the extra clock pulse needed when
the timer rolls over from FFFF to 0 and raises the TF flag.
Program 3: Find the time delay obtained for the following program.

Solution:

 Instruction Machine Cycles

 MOV TMOD, #10H 2

AGAIN: MOV TL1, #0EAH 2

 MOV TH1, #0FFH 2

 SETB TR1 1

WAIT: JNB TF1, WAIT 22 (depends on the initial value
in the timer = max. value – init. Value + 1)

 CLR TR1 1 (FFFF – FFEA + 1)

 CLR TF1 1

 SJMP AGAIN 2

5‐6 Programming 8051 Timers & Serial port

Maanya’s M.G.B Publications Microcontrollers

 Total 33

frequencyCrtal
12cycles machineNo.of =delay Total ×

μs35.805μ1.08533
M11.0592

1233=delay Total =×=×

Note:

D22H16

1
HFFEAvalueIntially
HFFFFvalueMaximum

=
+

−→
→

5.2 Write programs to generate a square wave of given
frequency and duty cycle using timer.
The time delays generated by the timers are used in many applications. One of the most
widely used is in the generation of square wave. This is done by toggling
(complementing) one or more port pins at a repeated fixed intervals of time (depending
on the duty cycle).
Program 4: Write a program using timer 0 and mode 1 to generate a square wave of
frequency 2KHz with 50% duty cycle on P1.5. Assume clock frequency is MHz11.0592 .

Solution:
1. Clock frequency = 11.0592 MHz;

Hence period = microsec1.085MHz11.05921 =

2. Square wave frequency = 2 KHz;
Hence period = microsec500kHz21 =

Since 500 microsec is the period of square wave, 250 microsec will be ON period
and 250 microsec will be OFF period.

3. Calculation of the initial value:

Initial value = Period of the pulse output/Internal clock period
 230microsec.085microsec/1250 ==

4. Subtract this value (230) from 65536

5‐7Programming 8051 Timers & Serial port

Maanya’s M.G.B Publications Microcontrollers

6530623065536 =−
5. Convert this value (65306) into HEX

HFF1A65536d =

6. Load 1A in TL0 and FF in TH0.
Main Program:

Label Instruction Comment

START MOV TMOD, #01H Timer-0 under mode-1

REPEAT MOV TL0 , #1AH Load TL0 with 1AH value

 MOV TH0, # 0FFH Load TH0 with 0FFH value

 CPL P1.4 Complement or Toggle P1.4

 ACALL DELAY Delay subroutine called

 SJMP REPEAT Repeat again to generate
LOW/HIGH portion of square wave

Delay Subroutine:

Label Instruction Comment

DELAY SETB TR0 Start the timer

STAY JNB TF0, STAY Stay and Monitor the timer
flag ‘1’ until it rolls over

 CLR TR0 Stop the timer

 CLR TF0 Clear TF0 flag

 RET Return to the main program

Additional Information
The delay can be generated by a subroutine.

The algorithm for the square wave generation is given below.
Main Program:

1. Initialize the timer 0 in mode 1.
2. Load the initial value into TL0 and TH0.
3. Complement (toggle) P1.4 (that is a 1 becomes a zero and vice versa).
4. Call timer delay subroutine.
5. Repeat from step 2.

5‐8 Programming 8051 Timers & Serial port

Maanya’s M.G.B Publications Microcontrollers

Subroutine Algorithm:
1. Start timer.
2. Wait until timer flag is set.
3. Stop timer.
4. Clear timer flag.
5. Return to the main program.

Program 5: Generate a square wave with an ON time of 3ms and an OFF time of 10ms
on pin P3.4. Assume a crystal frequency of 11.0592 MHz. Use timer 0 in mode 1.
Solution:

The clock period = secμ1.085
MHz11.0592

12
=

Case 1: ON time initial value computation:

 Number of clocks for ON time: 2765
μs1.085

ms3
=

 Initial value to be loaded: F533H62271276565536 ==−
 H330TL&H5F00TH ==
Case 2: OFF time initial value computation:

 Number of clocks for OFF time: 9216
μs1.085

ms10
=

 Initial value to be loaded: DC00H56320921665536 ==−
H000TL&DCH00TH ==

Main Program:
Label Instruction Comment
START MOV TMOD, # 01 H Timer 0 in mode 1
BACK MOV TL0, # 00H To generate the OFF time, load TL0

 MOV TH0, # 0DCH Load OFF time value in TH0
 CLR P3.4 Make port pin Low
 ACALL, DELAY Call delay routine
 MOV TL0, # 33H To generate on time, load TL0
 MOV TH0, # 0F5H Load ON time value in TH0

5‐9Programming 8051 Timers & Serial port

Maanya’s M.G.B Publications Microcontrollers

 SETB P3.4 Make port pin HIGH
 ACALL DELAY Call delay
 SJMP BACK Repeat

Delay Subroutine:

Label Instruction Comment

DELAY SETB TR0 Start the counter

AGAIN JNB TF0, AGAIN Check times overflow

 CLR TR0 When TF0 is set, stop the timer

 CLR TF0 Clear times flag

 RET

5.3 Explain how to use an 8051 timer as an event counter.
5.3.1. Counter Programming
 When timer/counter is used as an event counter, the source of clock pulses is
outside the 8051. If 1TC/ = in the TMOD register, timer/counter is used as an event
counter and the source of clock pulses is outside the 8051. The pulses are fed from

()P3.4T0 and ()P3.5T1 .

 In the TMOD register, if 0TC/ = , the timer gets pulses from the crystal, when
1TC/ = the timer is used as counter and gets its pulsed from outside the 8051. Therefore,

when 1TC/ = the counter count up as pulses are fed from pin 14 and 15. These pins are
called T0 and T1 , notice that these two pins belong to part 3. In the case of timer 0,
when 1TC/ = , pin 3.4 provides the clock pulse and the counter counts up for each clock
pulse coming from that pin. Similarly for timer 1, when 1TC/ = each clock pulse coming
in from pin 3.5 makes the counter count up.
a) Counter 0 in Mode 1
 The simplified block diagram of Counter 0 in Mode 1 is shown in fig. The counter
counts up when the logic signal on pin T0 (P3.4) goes from high level to low level (1 to 0
transition).

Fig. Counter 0 in mode 1

5‐10 Programming 8051 Timers & Serial port

Maanya’s M.G.B Publications Microcontrollers

 Timer/counter is used as an event counter by making 1TC/ = in the TMOD
register. TR0 is used to start and stop the counter.

Counter 0 starts counting up at the rate at which the transitions occur at pin T0
(P3.4) of 8051. The counting will start from the 16-bit initial value present in the TH0
and TL0 registers. When the counter value exceeds FFFFH, timer overflow flag TF0 is
set to 1.
b) Counter 1 in Mode 1
 The simplified block diagram of Counter 1 in Mode 1 is shown in fig. The counter
counts up when the logical signal on pin T1 (P3.5) goes from high level to low level.

 Timer/counter is used as an event counter by making 1TC/ = in the TMOD
register. TR1 is used to start and stop the counter.

Fig. Counter 1 in mode 1

 Counter 1 starts counting up at the rate at which the transitions occur at pin T1
(P3.5) of 8051. The counting will start from the 16-bit initial value present in the TH1
and TL1 registers. When the counter value exceeds FFFFH, timer overflow flag TF1 is
set to 1.

5.4 Write a program to count the number of events using timer.
Program 6: Write a program to count the pulses of an input signal every second and
display the count value on ports 1 and 2.
Solution:
 The external input clock pulses can be fed to one of the timers say timer ‘0’. Hence
timer ‘0’ is acting as counter ()1TC/ = and the mode of timer ‘0’ can be mode 1
()01MM 01 = for a very large count (16-bit counter-counts from 0000 to a maximum
value of FFFFH). The external input is to be fed to pin P3.4. We need a 1 second timing
to be generated. This can be done by using Timer ‘1’ in mode 1 (refer example 8.5).
Maximum delay by timer 1 in mode 1

= ()
frequencyCrystal
12FFFH ×

MHz11.0592
1265535×

= seconds0.0711=

 This is repeated 14 times (register R0 is used as counter) to get 10.071114 ≈×
second delay.

5‐11Programming 8051 Timers & Serial port

Maanya’s M.G.B Publications Microcontrollers

Algorithm:
1. Initialize timer 1 as timer, mode 1 and timer 0 as counter, mode 1.
2. Set P3.4 as input pin (to feed external pulses to be counted).
3. Initialize the timer 0 registers as 0000 (to count from 0) & start timer 0.
4. Initialize counter (R0) with 14 (for 1 second delay).
5. Initialize timer 1 registers with initial count (here 0000H for maximum delay of

0.0711 seconds).
6. Start timer1.
7. Wait till timer 1 overflows ()1TF1 = .

8. Stop timer 1 and clear TF1.
9. Decrement counter R0 and if not zero, repeat from step 5.
10. Display the count accumulated in TH0:TL0 on port 2 and 1.
11. Repeat from step 3 for continuous display every second.

Hence TMOD = 15 H

Assembly Language Program:

 ORG 00H

 MOV TMOD, #15H ; Timer 1 - - timer, mode 1 and
; timer 0 - - counter, mode 1

 SETB P3.4 ; make port pin as input to
accept external clock

rept: MOV TL0, #00 ; initialize counter (timer0) to
count from zero

 MOV TH0, #00

 SETB TR0 ; start timer 0

 MOV R0, #14 ; to repeat timer 1 14 times
for 1 second delay

5‐12 Programming 8051 Timers & Serial port

Maanya’s M.G.B Publications Microcontrollers

again: MOV TL1, #00 ; Initialize timer 1

 MOV TH1, #00 ; start timer 1

wait: JNB TF1, wait ; wait till timer 1 overflows

 CLR TR1 ; stop timer 1

 CLR TF1 ; clear timer flag

 DJNZ R0, again ; repeat till R0 becomes zero

 CLR TR0 ; stop timer 0

 MOV A, TL0 The count in timer 0
; (since 1 second is over)

 MOV P1, A ; is displayed on port P1

 MOV A, TH0 ; upper part of count on port P2

 MOV P2, A

 SJMP rept ; repeat for next 1 second count

 END

 A schematic of the hardware set-up for the above example is shown in fig.

Program 7: Assuming that clock pulses are fed into pin T1, write a program for counter
1 in mode 2 to count the pulses and display the state of the TL1 count on P2.
Solution:

 MOV TMOD, #01100000B counter 1, mode 2, 1C/T =
external pulses

 MOV TH1, #0 clear TH1

 SETB P3.5 make T1 input

AGAIN: SETB TR1 start the counter

BACK: MOV A, TL1 get copy of count TL1

 MOV P2, A display it on port 2

 JNB TF1, Back keep doing it if TF=0

5‐13Programming 8051 Timers & Serial port

Maanya’s M.G.B Publications Microcontrollers

 CLR TR1 stop the counter 1

 CLR TF1 make the counter 1

 SJMP AGAIN keep doing it

 Notice in the above program the role of the instruction “SETB P3.5”. Since ports
are set up for output when the 8051 is powered up, we make P3.5 an input port by
making it high. In other words, we must configure (set high) the T1 pin (pin P3.5) to
allow pulses to be fed into it.

 P2 is connected to 8 LEDs and input T1 to pulse.
 In example 4.15 we are using timer 1 as an event counter where it counts up as
clock pulses are fed into pin P3.5. These clock pulses could represent the number of
people passing through an entrance, or the number of wheel rotations, or any other
event that can be converted to pulses.

5.5 Explain how to program 8051 serial port to transmit and
receive serial data.
5.5.1. Procedure to Program the 8051 to Transfer Data Serially
The following steps give the steps to program 8051 for serial data transfer.

1. Initialize TMOD with 20H, to make use of timer 1 in mode 2 (auto reload) to set the
baud rate.

2. Load the initial value into TH1 for the required baud rate.
3. Initialize SCON register, generally 50H for serial mode 1, 8-bit data, start and stop

bits.
4. Start timer (TR1 = 1).
5. Clear TI flag.
6. Move the 8-bit data to be transmitted serially into SBUF register.
7. Wait until TI flag is set (remember TI flag is set after the contents of SBUF register,

along with START and STOP bits have been transmitted serially on Tx pin).
8. For transferring another 8-bit data (character), repeat from step 5.

5.5.2. Procedure for Programming the 8051 to Receive Data Serially
 All the above programs involved transmission of serial data. In this section we
deal with the reception of character bytes serially. The following steps are needed.

5‐14 Programming 8051 Timers & Serial port

Maanya’s M.G.B Publications Microcontrollers

1. Load TMOD register with 20H (for Timer 1, in mode 2) to generate serial clock.
2. Load initial value in TH1 for the required baud rate.
3. Load SCON with 50H (for serial mode 1, 8-bit data, start & stop bits and receive

enable turned on) (refer example 8.16 for expansion of SCON).
4. Start timer 1 (TR1 = 1).
5. Clear RI flag (to enable reception).
6. Wait till RI flag goes high. 1RI = when a character is received completely in SBUF.
7. Read SBUF for the received character.
8. Repeat from step 5 for receiving next character.

5.6 Write a program to transmit a message serially using serial
port.
Program 8: Write a program to transfer a letter ‘H’ serially at 9600 baud continuously.

Solution:
 TMOD register = →20H Timer 1, Mode 2
 SCON register initialization → SCON = 50H as shown below.

Assembly Language Program

 MOV TMOD, #20H Timer 1, Mode 2 (auto reload)

 MOV TH1, #-3 9600 baud rate

 MOV SCON, #50H serial mode 1, 8-bit data

 SETB TR1 start timer

AGAIN: MOV SBUF, #’H’ move the character to SBUF
 register for serial transfer

WAIT: JNB TI, wait wait until serial transmission is over

 CLR TI clear transmit flag

 SJMP AGAIN repeat again

5‐15Programming 8051 Timers & Serial port

Maanya’s M.G.B Publications Microcontrollers

Program 9: Write an 8051 assembly language program to transfer the message
“HELLO” serially at 9600,baud, 8-bit data, 1 stop bit.

Solution:
Main program:

 MOV TMOD,#20H Timer 1, mode 2

 MOV TH1, #FDH 9600 baud rate

 MOV SCON, #50H 8-bit, 1 stop bit, REN enabled

 SETB TR1 Start timer 1

START MOV A, #”H” Transfer “H”

 ACALL TRANS

 MOV A, #”E” Transfer “E”

 ACALL TRANS

 MOV A, #”L” Transfer “L”

 ACALL TRANS

 MOV A, #”L” Transfer “L”

 ACALL TRANS

 MOV A, #”0” Transfer “0”

 ACALL TRANS Serial data transfer subroutine

Delay Subroutine:
TRANS MOV SBUF, A Load SBUF

HERE JNB TI, HERE Wait for the last bit to

 Transfer

 CLR TI Clear TI for the next Character

 RET

5.7 Write a program to receive a message serially and store it in
memory.
Program 9: Program the 8051 to receive bytes of data serially, and put them in PI. Set
the baud rate at 4800, 8-bit data, and 1 stop bit

5‐16 Programming 8051 Timers & Serial port

Maanya’s M.G.B Publications Microcontrollers

Solution:

 MOV TMOD, #20H Timer 1, mode 2(auto-reload)

 MOV TH1, #-6 4800 baud

 MOV SCON, #50H 8-bit, 1stop, REN enabled

 SETB TR1 Start Timer 1

HERE JNB RI, HERE Wait for char to come in

 MOV A,SUBUF Save incoming byte in A

 MOV P1,A Send to port 1

 CLR RI Get ready to receive next byte

 SJMP HERE Keep getting data

Program 9: write a program to receive message from PC to 8051. Message string is
“Hello”. After this micro controller sends message to PC “Fine”.
Solution: The fig. shows the connection between 8051 and PC.

 MOV TMOD, #20H Initialize timer 1 in mode 2

 MOV TH1, #0FDH Load count to get 9600 baud rate

 MOV SCON, #50H 8-bit, 1 stop, REN enabled

 SETB TR1 Start timer 1

 MOV DPTR, #2000H Initialize memory pointer to
save received data

 MOV R0, #05H Initialize counter to read
5 characters

RECV JNB RI, RECV Wait for character

 MOV A, SBUF Read the character

 MOVX @ DPTR, A Save it in memory

 INC DPTR Increment memory pointer

 CLR RI Get ready for next character

5‐17Programming 8051 Timers & Serial port

Maanya’s M.G.B Publications Microcontrollers

 DJNZ R0, RECV If not last character repeat

 MOV DPTR, #MY DATA Initialize pointer for message

 MOV R0, #4H Initialize counter to send
 4 characters

 MOVC A, @A+DPTR Get the character

 MOV SBUF, A Load the data

 JNB TI, HERE Wait for complete byte transfer

 CLR TI Get ready for next character

MYDATA DB ”Fine”, 0

 END

Program 12: Write a program to receive serial data and place it in RAM memory
location 62H and also send it to port P2.
Solution:
Assembly Language Program

 MOV TMOD #20H ; Timer 1, mode 2

 MOV TH1, # 3− ; 9600 Baud rate

 MOV SCON, #50H ; serial mode 1, receive enable,
8-bit, START & Stop bit

 SETB TR1 ; start timer

again: CLR RI ; clear flag

wait: JNB RI, wait ; wait till character is received

 MOV A, SBUF ; put received character into A

 MOV 62H, A ; copy into memory location 62H

 MOV P2, A ; output to port P2

 SJMP again ; repeat for next character

5.8 Explain RS232 standards
RS 232 is the most widely used serial I/O interfacing standard. The RS232

standard was published by the Electronic Industry Association (EIA) in 1960. The
COM1 and CMO2 ports in IBMPC are RS 232 compatible ports. In RS 232, 1 is
represented by 3− to 25V− and 0 is represented by 3+ to 25V+ .

5‐18 Programming 8051 Timers & Serial port

Maanya’s M.G.B Publications Microcontrollers

In a microcontroller, serial TXD and RXD lines are TTL compatible i.e. 1 and 0
are represented by 5V+ and 0V. For this reason, in order to connect a microcontroller
to RS 232 bus, voltage converters are used. MAX 232 IC is commonly used to convert
the TTL logic levels to the RS 232 voltage levels. The significance of the number 232 is
that 2 is transmission line, 3 is receiving line, and 7(2+3+2) is signal ground line. In RS
232, ground line is common to the transmitter and receiver, and they are usable up to
one meter without any shield.
5.8.1. RS 232 Pin CONNECTORS
 Basic data communication link is shown in fig. The communication link consists of
Data Terminal Equipment (DTE) and an associated modem (DCE) at each end. The
function of modem is to process digital information received from the computer into a
form suitable for analog transmission. Also, it receives analog signal and processes it
into digital information.

Fig. Data communication system

 RS232 uses a 25 pin plug connector for all interface circuits and is commonly
referred to as the DB-25 pin connector. DB-25P refers to the plug connector (make) and
DB-25S refers to the socket connector (female). Since all the 25 pins are not used in PC,
IBM introduced DB-9 connector. These plug connectors are shown in fig.

There are basically two standards for serial data transmission between data
terminal equipment (DTE) and data communication equipment (DCE). The transmitted
data either in current or voltage form. When data are transmitted as a voltage form, the
commonly used standard is known as RS-232.
 RS-232 means Recommended Standard-232. It is a single ended, bipolar voltage,
25-pin electrical interface. It was introduced in 1960. It was developed by Electronics
Industries Association (EIA). There are some versions of RS-232 are developed, they are
RS-232A, RS-232B and RS-232C etc. In which RS-232C is the most widely used serial
I/O interfacing standard.
 RS-232C is widely used for direct connection between data acquisition and
computer systems. Where the data acquisition system is referred as DCE (data
communication equipment) such as Printer, Modem, Data storage units etc., and PC is
the example for DTE. The rate of data transmission in RS-232C is restricted to a
maximum of 20kbaud and a distance of 50ft.

5‐19Programming 8051 Timers & Serial port

Maanya’s M.G.B Publications Microcontrollers

5.9 List RS232 pins of DB 25 and DB 9 connectors
The RS-232 specifies 25 signals for the bus used for serial data transfer. In

practice first 9 signals are sufficient for most of the serial data transmission; RS-232
serial bus is terminated on D-type 9-pin connector. In case all 25 signals are used, then
RS-232 serial bus is terminated on D-type 25-pin connector. DB9 and DB25 connectors
of RS-232 are shown below.
a) DB- 9P connector details

Pin Number Common Name Details

1 DCD Data Carrier Detector

2 RxD Receive Data

3 TxD Transmit Data

4 DTR Data Terminal Ready

5 GND Signal Ground

6 DSR Data set ready

7 RTS Request to send

8 CTS Clear to send

9 RI Ring Indicator

b) DB 25P connector details

5‐20 Programming 8051 Timers & Serial port

Maanya’s M.G.B Publications Microcontrollers

Pin
Number

Common
Name

RS-232C
Name

Details Direction of
signal on DCE

1 AA Protective ground
2 TxD BA Transmit data through this

pin
IN

3 RxD BB Data received through this
pin

OUT

4 RTS CA Request signal to send data IN

5 CTS CB Clear to send OUT

6 DSR CC Data set ready OUT

7 GND AB Ground pin --
8 CD CF Received line signal detector OUT

9 - - Reserved for Data set testing -
10 - Reserved for Data set testing -
11 - Unassigned -
12 SCF Secondary Received line

signal detector
OUT

13 SCB Secondary clear to send OUT
14 SBA Secondary Transmitted Data IN
15 DB Transmission signal element

timing(DCE source)
OUT

16 SBF Secondary received data OUT
17 DD Receiver signal element

timing(DCE source)
Unassigned

OUT

18 - Unassigned -
19 SCA Secondary request to send IN
20 DTR CD Data terminal ready IN
21 CG Signal quality detector OUT
22 CE Ring indicator OUT
23 CH/CI Data signal rate selector

(DTE/DCE Source)
IN/OUT

24 DA Transmit signal element
timing (DTE source)

IN

25 - Unassigned -

5‐21Programming 8051 Timers & Serial port

Maanya’s M.G.B Publications Microcontrollers

5.10 Explain MAX 232 and 233 and interfacing
5.10.1. MAX232
 The MAX232 converts RS232 voltage levels to TTL voltage levels and vice versa.
One advantage of the MAX232 chip is that it uses a 5V+ power source which is the
same as the source voltage for the 8051. In otherwords, with a single V5+ power
supply we can power both the 8051 and MAX232, with no need for the dual power
supplies that are common in many older systems.
 The MAX232 has two sets of line drivers for transferring and receiving data, as
shown in fig. The line drivers used for TxD are called 1T and 2T , while the line drivers
for RxD are designated as 1R and 2R . In many applications only one of each is used.
For example, 1T and 1R are used together for TxD and RxD of the 8051, and the second
set is left unused.
Circuit Implementation:
 Notice in MAX232 that the T1 line driver has a designation of inT1 and outT1 on
pin numbers 11 and 14, respectively. The inT1 pin is the TTL side and is connected to
TxD of the microcontroller, while outT1 is the RS232 side that is connected to RxD pin of
the RS232 DB connector. The R1 line driver has a designation of inR1 and outR1 on pin
numbers 13 and 12, respectively. The inR1 (pin 13) is the RS232 side that is connected to
the TxD pin of the RS232 DB connector, and outR1 (pin 12) is the TTL side that is
connected to the RxD pin of the microcontroller. See fig. Notice the null modem
connection where RxD for one is TxD for the other.
 MAX232 requires four capacitors ranging from 1 to μF22 . The most widely used
value for these capacitors is μF22 .

5‐22 Programming 8051 Timers & Serial port

Maanya’s M.G.B Publications Microcontrollers

5.10.2. MAX233
 To save board space, some designers use the MAX233 chip from Maxim. The
MAX233 performs the same job as the MAX232 but eliminates the need for capacitors.
However, the MAX233 chip is much more expensive than the MAX232. Notice that
MAX233 and MAX232 are not pin compatible. You cannot take a MAX232 out of a
board and replace it with a MAX233. See fig. for MAX233 with no capacitor used.

Additional Information

* Interrupts of 8051 *

A single microcontroller can serve several devices. There are two methods to do
this. The first method is called polling wherein the CPU continuously checks whether
any device needs to be serviced. In the interrupt method; the external devices sends a
signal to interrupt whatever the microcontroller is doing, and serve the device. Polling
method does not use the microcontroller efficiently and precious CPU time is wasted.
Further assigning priority is not possible.
Advantages of Interrupt Method over Polling Method:

1. In polling method, the microcontroller is not used efficiently. When this method is
used to service more than one device, it cannot assign priority, but serves in round
robin fashion, and hence cannot ignore (mask) a device request for service.

2. In interrupt method, the microcontroller is free from checking the status of the
devices. Only when the devices are ready, they interrupt the microcontroller and
get the service. In the meantime the microcontroller can be programmed for some
useful tasks.

3. The other advantage is that priority can be assigned to the interrupts and the
interrupts can be masked (ignored).

5‐23Programming 8051 Timers & Serial port

Maanya’s M.G.B Publications Microcontrollers

5.11 Explain the need of relays and opto-couplers for interfacing
5.11.1 Need of relays for Interfacing
• A relay is an electrically controllable switch widely used in industrial controls,

automobiles, and appliances.
• It allows the isolation of two separate sections of a system with two different

voltage sources.

Fig.

• Example, a +5V system can be isolated from a 120V system by placing a relay
between them. An electromechanical (or electromagnetic) relay (EMR) is shown in
fig.

• The EMRs have three components: the coil, spring and contacts. In fig. a digital
+5V on the left side can control a 12V motor on the right side without any physical
contact between them.

• When current flows through the coil, a magnetic field is created around the coil (the
coil is energized), which cause the armature to be attracted to the coil.

• The armature’s contact acts like a switch and closes or opens the circuit. When the
coil is not energized, a spring pulls the armature to its normal state of open or
closed.

5.11.2. Need Of Opto Couplers For Interfacing
• An optocouplers is also known as optoisolator.
• An optoisolator is a combined package of a LED and photo sensor (photo diode or

photo transistor).

5‐24 Programming 8051 Timers & Serial port

Maanya’s M.G.B Publications Microcontrollers

Fig.

• An optoisolator is used to isolate two parts of a system.
• An example is driving a motor. Motors can produce what is called back EMF, a

high voltage spike produced by a sudden change of current as indicated in the V=
Ldi/dt formula.

• In situations such as printed circuit board design, we can reduce the effect of this
unwanted voltage spike (called ground bounce) by using decoupling capacitors
(see Appendix C).

• In systems that have inductors (coil winding), such as motors, decoupling capacitor
or a diode will not do the job. In such cases we use optoisolators.

• Optoisolators area widely used in communication equipment such as MODEMS.
This allows a computer to be connected to a telephone line without risk of damage
from power surges.

• Fig. shows the optoisolator packages, IL 74 and ILD 74. IL 74 contains only one
optoisolator. ILD 74 contains two optoisolators. ILQ 74 contains four optoisolators
(not shown in fig).

5.12 Interface 8051 with relay to drive a lamp
• Fig. shows the interfacing of a relay 106462 with microcontroller 8051. Here the

port pin P1.0 is connected to the input side of relay. P1.0 acts as an output port. A
lamp is connected to the output side of the relay. The 8051 microcontroller controls
the lamp output through the relay 106462.

Fig.

5‐25Programming 8051 Timers & Serial port

Maanya’s M.G.B Publications Microcontrollers

• The relay given in the fig is a SPST-NO, (single pole, signal throw with normally
opened). When +5V DC is applied to its input, the coil is energized and the NO
contact is closed.

• The output current at the port pin of the microcontroller is insufficient to drive the
relay. It can provide a maximum of 1 to 2mA current. But the relay coil requires
around 10mA current to be energized. Therefore a driver (ULN 2803) is used
between the microcontroller and the relay.

Note: The driver is used to raise the current, for driving the relay.
ALP to turn ON and OFF the lamp via the Relay
 The following program turns the lamp ON and OFF by energizing and de-
energizing the relay every second.

 ORG 0H; Origin at 0H

MAIN: SETB P1.0 ;Make port pin P 1.0 as high

 ACALL DELAY

;Call delay subroutine

 CLR P 1.0 ;Make port pin P1.0 as low

 ACALL DELAY ;Call delay subroutine

 SJMP MAIN ;Repeat the process

 END ;End of program

DELAY: MOV R1, # 37H ;Delay subroutine

L3 MOV R2, # 64H

L2 MOV R3, # FD H

L1 DJNZ R3, L1

 DJNZ R2, L2

 DJNZ R1, L3

 RET

 END

Additional Information:
Fig. illustrates the symbol of relay and interfacing of a relay with 8051. Simply

making the pin ‘0’ or ‘1’ will switch ON/OFF the relay.

5‐26 Programming 8051 Timers & Serial port

Maanya’s M.G.B Publications Microcontrollers

Fig.

5.13 Interface a solid state relay to drive mains operated motor
5.13.1. Solid state relay
• A solid state relay (SSR) is a solid state electronic component that provides a similar

function to an electromechanical relay but does not have any moving components.
• In this relay, there is no coil, spring, or mechanical contact switch. The entire relay

is made out of semiconductor materials. Because no mechanical parts are involved
in solid- state relays, their switching response time is much faster than of
electromechanical relays.

• Another problem with the electromechanical relay is its life expectancy. The life
cycle for the electromechanical relay can vary from a few hundred thousand to few
million operations. Wear and tear on the contact points can cause the relay of
malfunction after a while. Solid-state relay have no such limitations.

• Extremely low input current and small packaging make solid-state relays ideal for
microprocessor and logical control switching.

• They are widely used in controlling pumps, solenoids, alarms, and other power
applications.

• Some solid-state relays have a phase control option, which is ideal for motor-speed
control and light- dimming applications.

5.13.2. Interface a solid state relay to drive mains operated motor
• Fig illustrates the internal structure of a solid state relay and its interfacing with

8051.
• A photo-coupled SSR is controlled by a low voltage signal which is isolated

optically from the load. The control signal in a photo-coupled SSR typically
energies an LED which activates a photo-sensitive diode.

• The diode turns on a back-to-back thyristor, silicon controlled rectifier, or MOSFET
transistor to switch the load.

5‐27Programming 8051 Timers & Serial port

Maanya’s M.G.B Publications Microcontrollers

Fig.

Additional Fig.

Additional Information
* Stepper motors *

a) Introduction to Stepper motor
• Basically stepper motors are electromechanical converters that translate electrical

pulses into mechanical movement. They differ from constant speed motors in the
shaft movement i.e., the movement of the shaft will be in steps.

• The angle through which the motor rotates for each input pulse is called the step
angle (a). It is given by

revolutionperstepsofnumber

360αangleStep
o

=,

• If the number of steps per revolution is 180, then step angle is

 o
o

2
180
360α ==

• The step angle can be adjusted by changing one of the following.
a) Number of poles on the rotor
b) Number of phases (windings) on the stator
c) Sequence of excitation of stator windings.

Note: The below table gives some step angles.

5‐28 Programming 8051 Timers & Serial port

Maanya’s M.G.B Publications Microcontrollers

Step angle Steps per revolution
0.72 500
1.8 200
2.0 180
2.5 144
5.0 72
7.5 48
15 24

b) Construction of stepper motor
 Fig. (a) shows the constructional details of permanent magnet stepper motor. It
consists of:

a) Rotor without windings
b) Stator with windings

fig. (a)

Fig. (b)

• The stepper motor discussed here has a total of 6 leads: 4 leads representing the
four stator windings and 2 commons for the center tapped leads (see fig. (b)).

• Such a stepper motor is called as four phase or uni-polar stepper motor.

1. Rotor
• Stepper motor has a permanent magnet rotor.
• It is made of alnico magnetic material

5‐29Programming 8051 Timers & Serial port

Maanya’s M.G.B Publications Microcontrollers

• The number of teeth on the rotor is referred to as “pole”.

2. Stator
• The fig. (b) shows stator winding configuration.
• Stator is made of low retentivity steel. The number of windings in the stator is

referred to as “phase”. Phase windings are placed on the projected portions of the
stator.

• The stator windings (A, b, C and D) must be exited in a particular sequence. This
makes the motor to move to next step. This sequence is called as “Excitation
sequence”.

• A stepper motor requires an electronic controller to energize its windings in a
proper sequence thereby causing it to step. The stepper motor controller requires:

o Logic sequencer
o Power drivers

Logic sequencer Power drivers

• The logic sequencer
generates the following
sequence in which the
stator windings are to be
excited.

• The power drivers supply
necessary current to
energize the motor
windings.

5.14 Explain the working of a stepper motor.
• A permanent magnet stepper motor has a rotor, which is a permanent magnet and

a stator made up of electromagnets.
• The rotor will move to align itself to the energized electromagnet (field pole). If the

field magnets are energized one after the other around the circle, the rotor can
move making a complete rotation.

• Four-phase unipolar stepper motors are commonly used. The term phase refers to
the number of separate winding circuits. In case of four-phase stepper motor, there
are four field windings energized independently. Unipolar means that the current
always flows in the same direction in the coils.

Case – 1: Four step wave drive sequence
• Fig. shows the timing diagram for exciting a four-phase unipolar stepper motor.
• Wave drive 4-step sequence has only one winding energized at a given instant of

time. The motor is made to rotate in steps of o90 in the clockwise direction by
exciting the stator phases.

5‐30 Programming 8051 Timers & Serial port

Maanya’s M.G.B Publications Microcontrollers

• When phase A is excited the magnetic field is setup along A. Rotor aligns itself
along A. When phase B is excited, the magnetic field is setup along B. Rotor aligns
itself along B and so on.

• Thus the motor is made to rotate in steps of 090 in clockwise direction by exciting
the stator phases sequentially in the following order A, B, C and D.

• The motor is made to rotate in steps of o90 in the counter clockwise direction by
exciting the stator phases sequentially in the following order: D, C, B and A. Table.
shows the rotation of the rotor in a stepper motor along with the wave drive 4-step
sequence.

Fig.

Case – 2: Half step sequence

Fig.

• When phase A and B are excited, the magnetic field is setup between A and B.
Rotor aligns itself between A and B. The motor is made to rotate in steps of o90 in
the clockwise direction by exciting the stator phases sequentially in the following
order: AB, BC, CD and AD.

5‐31Programming 8051 Timers & Serial port

Maanya’s M.G.B Publications Microcontrollers

• The motor is made to rotate in steps of o90 in the counter clockwise direction by
exciting the stator phases sequentially in the following order: AD, CD, BC and AB.
Table. 10.5 shows the rotation of the rotor in a stepper motor, along with the
winding energization sequence.

Note:
• The four step wave drive sequence is also called as “full stepping” sequence.
• To allow finer resolutions all stepper motors use an 8 step switching sequence. It is

also called as half stepping as follows.
• Each step is the half of the normal step angle.

Case – 3: Half step 8-step sequence

Fig.

 To double the number of steps/revolution, 8-step sequence is followed as shown
in Table. With this method, the step size is half the original step size and hence the 8-
step sequence is called ‘half stepping’. The motor is made to rotate in step of o45 in the
clockwise direction by exciting the stator phases sequentially in the following order: A,
AB, B, BC, C, CD, D, and AD. The motor is made to rotate in steps of o45 in the counter
clockwise direction by exciting the stator phases sequentially in the following order:
AD, D, CD, C, BC, B, AB and A.

5.15 Draw and explain a driver circuit required to run a stepper
motor
• The stepper motor requires high power where as the output power level of the

sequential signal produced from the microcontroller are small. Hence
microcontroller cannot be used directly to drive the motor. Power drivers are
inserted in between the microcontroller and the motor.

• The power drivers supply necessary current to energized the motor windings.

5‐32 Programming 8051 Timers & Serial port

Maanya’s M.G.B Publications Microcontrollers

• Fig. shows the method of connecting stepper motor to microcontroller 8051. ULN

2003 is used as a power driver to energize the stator. The ULN 2003 has an internal
diode to take care of back EMF.

• The micro controller port lines P1.4, P1.5, P1.6, and P1.7 are used to control the four

windings of the stepper motor.
• After power on reset, the port lines of the microcontroller will be in the high level,

which may energize all the windings at the same time. In order to avoid this error
condition, signal from the port line is inverted using with the switching transistor
BC147 and then given to the power driver. ULN 2003.

• In the fig only P1.5 port alone is shown. Similar invertors are used for the other
ports P1.4, P1.6 and P1.7.

Circuit Operation:
• Sending ‘0’ level to the connected port line can energize a motor winding.
• The signal gets inverted in the transistor BC147 and the signal becomes a ‘1’ level.

This level will make the power driver IC ULN 2003 to energize the motor winding.
• The windings must be exited in a sequence and the excitation sequence is generated

by the microcontroller.

5.16 Interface a stepper motor
• The fig. shows block schematic of stepper motor interfaced to 8051.

5‐33Programming 8051 Timers & Serial port

Maanya’s M.G.B Publications Microcontrollers

Fig.

• Fig. shows 8051 connection to stepper motor.
• The four leads of the stator winding are controlled by port 1 bits P1.0 – P1.3.
• The 8051 does not have sufficient current to drive the stepper motor windings.
• Hence, a drive like ULN 2003 is required to energize the stator.

5.17 Write a program to run stepper motor continuously
Program 1: Write an assembly language program to rotate a stepper motor
continuously
Algorithm:
Step:1 Load initial value 99H into P1 for half step sequence
Step:2 Call delay
Step:3 Rotate the initial value right for clockwise rotation (left for counter clockwise
direction)
Step:4 Repeat from step 2
Assembly language program
Main program:

 MOV A,# 99h ;initial step sequence

NEXT: MOV P1, A ;output on P1 for motor to rotate

 RR A ;rotate clockwise (use RL A for counter clockwise)

 ACALL DELAY ;DELAY controls the speed of the stepper motor

 SJMP NEXT ;repeat continuously

5‐34 Programming 8051 Timers & Serial port

Maanya’s M.G.B Publications Microcontrollers

Delay program:

DELAY: MOV R2, #10H ;delay subroutine.
Change R2 value for
speed variation

LOOP2: MOV R1, #FFH

LOOP1: DJNZ R1, LOOP1

 DJNZ R2, LOOP2

 RET

Additional Information

Program 2: Write an assembly language program to rotate a stepper motor o100 in the
clock wise direction. The motor has a step angle of with the normal 4-step sequence.

Solution:

 Number of steps 50
2

100
anglestep

100
===

o

oo

Algorithm:
Step:1 Initialize a counter with 50 steps
Step:2 Send initial phase sequence, i.e., 99H to P1 port
Step:3 Call delay
Step:4 Rotate the phase sequence right (for clock-wise direction)
Step:5 Decrement counter and repeat from step 1 if counter is not zero
Step:6 If counter is zero, wait here.
Assembly language program
Main program:

 ORG 00H

 MOV A, #99H ;initial phase sequence

 MOV R0, #50 ;counter for 50 steps for
o100 rotation

BACK: RR A ;rotate sequence right for
clockwise rotation

 MOV P1, A ;output to port for stepper
motor to rotate

5‐35Programming 8051 Timers & Serial port

Maanya’s M.G.B Publications Microcontrollers

 ACALL DELAY ;small delay between steps

 DJNZ R0, BACK

HERE: SJMP HERE ;wait here after o100
rotation

Delay program:

DELAY: MOV R2, #10H ;delay subroutine.
Change R2 value for
speed variation

LOOP2: MOV R1, #FFH

LOOP1: DJNZ R1, LOOP1

 DJNZ R2, LOOP2

 RET

5.18 Explain pulse width modulation for controlling the speed of
small DC motor.
5.18.1. DC motor interfacing

Unlike stepper motor, the DC (direct current) motor rotates continuously. It has
two terminals positive and negative. Connecting DC power supply to these terminals
rotates motor in one direct and reversing the polarity of the power supply reverses the
direction of rotation. The speed of the DC motor is measured in revolutions per minute
(RPM).

To speed of the DC motor increases with increase in the supply voltage. However,
we cannot exceed supply voltage beyond the rated voltage. The speed of the DC motor
also depends on the load. At no-load speed is highest. As we increase the load, the
speed decreases. The overloading the DC motor can damage it because of excessive heat
generated due to high current consumption.
Direction control:

5‐36 Programming 8051 Timers & Serial port

Maanya’s M.G.B Publications Microcontrollers

• The fig shows how dc motor changes its direction of rotation when the polarity of
power supply reverses.

• By using switches for changing the power supply polarity we can control the
direction of the rotation of the DC motor. This is illustrated in the fig.

Fig: Bidirectional control of DC motor.

SW3 SW2 SW1 SW0 Motor rotation

ON OFF OFF ON Colckwise

OFF ON ON OFF Anticlockwise

Table: Switch configurations.
• Any other switch configurations, for example, SW0 and SW2 ON is invalid, because

it creates short circuit of the power supply.
Example: Write an 8051 ALP to control the direction of the DC motor according to the
status of bit P1.10. Assume port pins P2.0, P2.1, P2.2 and P2.3 controls the switches SW0,
SW1, SW2 and SW3 respectively.

Solution:

 ORG OH

 CLR P2.0 ;make all switches OFF

 CLR P2.1

 CLR P2.2

 CLR P2.3

 SETB P1.0 ;configure P1.0 as input

Check: JNB P1.0 ;Clockwise

 CLR P2.0 ;make SW0 OFF

 SWTB P2.1 ;make SW1 ON

 SWTB P2.2 ;make SW2 ON

5‐37Programming 8051 Timers & Serial port

Maanya’s M.G.B Publications Microcontrollers

 CLR P2.3 ;make SW3 OFF

 SJMP check

Clockwise: SETB P2.0 ;make SW0 ON

 CLR P2.1 ;make SW1 OFF

 CLR P2.2 ;make SW2 OFF

 SETB P2.3 ;make SW3 ON

 SJTB check

 END

5.18.2. Pulse width modulation (PWM)
DC motor’s speed is varied by varying the dc voltage supplied to it. Pulse Width

Modulation (PWM) method can be used to provide variable output. By changing the
width of the pulse, the average dc output voltage outV can be varied. The relationship
between pulse width and the average output voltage is as follows:

maxout VcycleDutyV ×=

Where
onoff

on
TT

TDutycycle
+

=

We know that the speed of the dc motor depends on the applied voltage. The
average applied Dc voltage and hence the power can be varied using technique called
pulse width modulation. In this technique, the dc power supply is not a voltage of fixed
amplitude; however it is a pulsating DC voltage. By changing pulse width we can
change the applied power. This is illustrated in the fig.

Fig: Applied power variation using pulse width modulation.

	0
	1
	2
	3
	4
	5

